
Designing a small-footprint curriculum
in computer science
Allen B. Downey and Lynn Andrea Stein

Olin College of Engineering
Needham, MA 02492

{allen.downey, las}@olin.edu

Abstract— We describe an innovative computing curriculum
that combines elements of computer science, engineering and
design. Although it is tailored to the constraints we face at Olin
college, it contains elements that are applicable to the design of a
CS major at a small school, a CS minor, or an interdisciplinary
program that includes computing. We present the core courses in
the program as well as several courses that are meant to connect
the computing curriculum to other fields. We summarize the
lessons we have learned from the first few years of this program.

I. INTRODUCTION

Necessity breeds invention. At Olin College of Engineering
we had the opportunity to design a computer science curricu-
lum from scratch, but we face several constraints. Like most
small colleges, we have only a few faculty in members in
computer science (CS); in addition, we have to keep our major
requirements small to accommodate general requirements in
engineering, science and math. And, like many computing
programs, we are trying to make more room for soft skills
like teamwork, communication and life-long learning.

This paper presents our Engineering with Computing cur-
riculum, a concentration combining elements of engineering,
design, and CS. We discuss the objectives of our curriculum
and its tradeoffs. Although Olin’s context is unique, much of
what we have learned applies to the design of a CS major at
a small school, a CS minor, or an interdisciplinary program
that includes computing.

The core of our curriculum is three classes that cover pro-
gram design, theory, and software systems. In both cases we
have refactored the CS curriculum by combining material from
several standard classes. Our theory class integrates elements
of complexity/automata theory, algorithms, and programming
languages. For example, we teach the logarithmic/exponential
relationship of tree structure—the foundation of many data
structures and algorithms—while showing how that same
logarithmic structure underlies binary numbers, the short cer-
tificates of NP-complete problems, and the stack trace of
expression evaluation in programming languages. The systems
course covers operating systems, networks and database imple-
mentation, allowing students to understand recurring themes
(like locality and caching) and appreciate the design of systems
that blur conventional boundaries.

Refactoring gives us an opportunity to demonstrate con-
nections among topics in a way that is clearer than in the

conventional structure, but it also forces us to make decisions
about what to omit. We mitigate these omissions by providing
students with an overview of de-emphasized topics and by
helping them develop capacity for life-long learning. For ex-
ample, several classes include explicit instruction and practice
at reading dense technical material.

At this point we have taught two complete iterations of our
curriculum. This paper presents our experiences and obser-
vations, although for now they remain generalizations without
formal evaluation. At this point we have anecdotal information
about early outcomes: our undergraduates regularly receive
internship and research offers over the summer, and the
feedback from their employers is positive. Our first graduates
have been accepted to prestigious graduate programs and have
been offered competitive jobs. We believe that our students are
differently educated from graduates of more traditional CS
programs, but it appears that they are of at least equal interest
to employers and academic institutions.

A. Olin College
Olin College of Engineering was founded in 1997 with

the goal of exploring innovative approaches to engineering
education. The first group of students matriculated in 2002
and will graduate in May 2006.

Olin’s curriculum is intended to address problems identified
by a number of agencies and organizations concerned with
the directions of engineering education. Specifically, Olin
emphasizes [1]:

• A shift from disciplinary thinking to interdisciplinary
approaches;

• Increased development of communication and teaming
skills;

• Greater consideration of the social, environmental, busi-
ness, and political context of engineering;

• Improved student capacity for life-long learning; and
• Emphasis on engineering practice and design throughout

the curriculum.
These values are shared by many other institutions; Olin was

founded specifically to pioneer ways of incorporating them
into an engineering curriculum.

In each year of the Olin curriculum there are several classes
that involve project work. Some educational experiences fol-
low the traditional pattern of acquiring knowledge and then



applying it (“learn then do”), but many others take the “do-
learn” approach, allowing students to explore and learn as
needed before receiving explicit instruction. We believe that
this approach builds students’ pragmatic skills (including diag-
nosis and debugging) and their capacity for life-long learning.
At the same time, it necessarily reduces the guarantees that
we can make about specific content delivery to our students.

Olin also emphasizes the context of problems and solutions.
We stress that it is not enough to produce a technically
feasible solution to a problem; the solution must also meet
the needs of its human users, integrate into their social and
organizational context, be pragmatically manufacturable and
financially and organizationally sustainable. Olin’s mission is
to train engineers who understand the social and pragmatic
aspects of problem-solving as well as the more technical
aspects. This requires the ability to communicate in both
technical and non-technical contexts and to work effectively
in multidisciplinary teams.

B. Engineering with Computing
Olin offers three undergraduate degrees: in Mechanical

Engineering (ME), in Electrical and Computer Engineering
(ECE), and in Engineering. Computer Science comes in the
form of the Engineering with Computing program (E:C),
which is a concentration within with Engineering degree.1 All
Olin degree programs are designed to be completed in four
years of coursework with no more than four courses in each
semester.

Major programs at Olin minimize the number of course re-
quirements in order to provide flexibility and to accommodate
general requirements in Engineering; Science, Math; and Arts,
Humanities, Social Sciences, Business and Entrepreneurship
(AHSE).

All students are required to complete a foundation curricu-
lum that includes 1.5 semesters (i.e., 6 courses) in engineering
principles and practices, modeling, and design; 1.5 semesters
of Science and Math; and 0.5 semesters in AHSE (followed
by advanced elective coursework in each of these areas).

In the senior year students complete a “realization” compo-
nent that involves a year-long team-based project drawn from
industry; a semester-long capstone experience in AHSE; and
a semester-long independent study of a topic of the student’s
choosing.

After these requirements and a small number of electives,
what is left for the “specialization” component of the cur-
riculum is approximately 1.5 semesters of coursework in the
major. Of course, it is a challenge to fit a major program
into this small footprint. Relative to other majors, the E:C
program faces an additional challenge because the foundation
courses provide little specific preparation for the computing
curriculum. Also, because the number of students who choose
the E:C major is small, we have an obligation to provide
courses that appeal to a broader set of students.

1One E:C core course also serves as a core course for the ECE program,
and several core courses in ECE and in E:C can be counted as electives for
the other major.

C. Outline
The following sections describe the set of courses we have

designed to satisfy these constraints.
Section II describes the classes we have designed as bridges

between computing and other areas of interest to the Olin
student body. These courses include the introductory courses,
Introduction to Programming and Software Design, as well
two advanced courses, Human Factors and Interface Design
and Computational Modeling.

Section III describes our core courses, Foundations of
Computer Science and Software Systems. These courses
cover much of the traditional computing curriculum, though
refactored and compressed.

Olin’s computing offerings are augmented by classes in
Discrete Math and Computer Architecture as well as more
unusual electives including Synchronization and (a planned
course in) Computer Systems and Public Policy.

II. BRIDGES TO COMPUTING

Because Engineering with Computing is only a small part
of Olin’s curriculum, most of our courses are designed with
the whole student body in mind.

A. Introductory Programming
A perpetual challenge of the introductory sequence is deal-

ing with the range of preparation in incoming students. About
one third of our students did not write a line of code before
college. Of the other two thirds, many are at the level of the
Computer Science Advanced Placement Exam or beyond.

To mitigate this problem, we offer Introductory Program-
ming, a 2-credit elective for incoming first-year students (2
contact hours per week plus 4 hours of preparation). This
course is taught in parallel with an integrated course block that
includes Calculus, Mechanics and a project-based introduction
to modeling and control. It covers basic programming skills
in MATLAB: variables and values, mathematical expressions,
functions, and tools for solving linear and non-linear systems.
Many of the example programs are based on work from other
classes, so the motivation is more natural than in some other
introductory classes.

Introductory Programming provides the basics students need
in other classes and gives them a head-start if they go on to
Software Design. It is partly self-paced; students work through
a sequence of ten modules. Although the class runs on a
schedule, students can complete any module at any time before
the end of the semester.

Because the first semester is graded Pass/No Credit and this
course is not required, students can fail to complete it without
consequences. Some students who discover that they do not
need the class drop out in the first few weeks. Other students
who hit a time crunch in the middle of the semester drop out
for a while, but some of them come back to complete the
class. A few students who have a particularly hard time with
programming are not able to complete all ten modules.

The goal of the course is to allow as many students as
possible to get what they need with minimal risk. As a result,



we have seen students who might have been scared off by a
conventional introduction, whose interest was piqued in this
class, and who went on to success in Software Design.

B. Software Design
Software Design addresses the specialized problems of

designing when your medium is software. It teaches stu-
dents how to think about software artifacts and their con-
struction/architecture. In addition, the course builds skills in
programming, code reading, and debugging.

This course takes a novel approach to the subject of com-
puter programming, differing from the traditional one both in
the questions that are asked and in the territory that is covered.
We provide a brief description here; this course is described
in detail in a previous paper [2].

Software Design presents computation as an ongoing in-
teractive process. The programs that students work with are
inherently concurrent and embedded in a context; they pro-
vide services or demonstrate emergent behavior. In a single
semester students progress from simple expressions and state-
ments to client/server chat programs and networked video
games; these topics proceed naturally and straightforwardly
from the interactive computational metaphor at the heart of
the class.

Students are taught to phrase the programmer’s questions
in terms of the relationships between components (rather than
algorithmic sequencing), so that topics like push vs. pull,
event-driven programming, message passing, and network
communication become integral aspects of this course. The
curriculum exploits this shift in the fundamental story of
programming to restructure what is basic and what is advanced
material. In other words, this course does not go deeper into
the curriculum than a traditional introductory course; it stands
the traditional curriculum on its end.

Because the computations developed in this course differ
from those encountered in traditional programming curricula,
the course is suitable for students with no prior programming
as well as those with background comparable to the AP Exam.

Instruction includes programming language syntax, but
greater emphasis is placed on incremental design, develop-
ment, and debugging; construction of conventional and spe-
cialized interfaces; and association of program behavior with
particular patterns of code.

A major component of the class is a weekly two-to-three
hour lab. Much of this time is spent in collaborative work on
program development, with an emphasis on student-student in-
teraction and student-student teaching, facilitated and enriched
by the course staff. In addition, design and implementation
work is supplemented with observational laboratory assign-
ments, inviting students to consider not only how to build a
program, but how to anticipate its behavior and how to modify
that behavior.

To address the range of preparation students bring to this
class, assignments include some elements that are required
for all students and optional elements that challenge more
advanced students. Optional work allows students to develop

their potential, but does not affect their grade, so it is possible
for a student with no prior experience to do well in the class
by displaying mastery of the basics.

In the second half of the course, students work in small
teams on a substantial project. Examples includes networked
video games, a peer-to-peer file sharing system, and programs
that analyze and generate text, sounds and images. For many of
them, it is their first experience programming with a team. We
emphasize the importance of learning to communicate about
programs and the need for common vocabulary.

It is sometimes difficult to convince advanced students that
the course has value for them. Some students are naturally
focused on the task of getting a program to work (by any
means necessary), and do not appreciate the importance of pro-
cess and style. These students often choose ambitious projects
that would be infeasible for a single person in the given time.
Because they are motivated to make the project succeed, they
often come to understand the need for design, style, teamwork
and communication, in addition to raw programming talent.

This course sets up the idea of concurrency and introduces
students to programming in a concurrent world, but it does
not show them how to solve all of the problems that they
will encounter there. Students see related material in Software
Systems and have the option of pursuing it in depth in
Synchronization (see Sections III-B and III-C).

C. Human Factors and Interface Design
Several classes in our curriculum combine students in the

E:C major with other students who have less experience with
software. One of these is Human Factors and Interface Design
(HFID). While this class addresses aspects of human-computer
interaction, it is not a heavily computational course. It relies
as much on students’ engagement with the design process as
on their software skills.

Olin emphasizes design, with a special focus on understand-
ing the users of a product or system as well as the context of
its use. Every student takes a sequence of classes in design,
including User-Oriented Collaborative Design, which requires
students to choose a user group and engage those users as
participants in a design process.

HFID continues the students’ exploration of design and
focuses them on the peculiar problems associated with us-
able software-centered systems. Because software enables us
to accomplish so much, software users and especially pro-
grammers often overlook how difficult and unpleasant the
experience of using software products often is. Too many
software professionals focus on the problem of making the
system work almost to the exclusion of making the system
usable. This course, like other usability-focused curricula,
emphasizes the need for a solution to work from a human,
social, organizational perspective as well as from a purely
technical standpoint.

Most students in HFID have taken Software Design, al-
though it is possible to complete the class with only web
programming experience. Over the course of a semester,
student teams identify a software-centered application and



its user group, create an improved interaction/interface, then
repeatedly refine their interface through user testing and formal
evaluation. Students may choose to work on web services,
standalone applications, or physical devices with software-
driven interactions. Student projects have included an innova-
tive music player/organizer, a location-aware PDA for tourists,
and interfaces for campus information systems.

D. Computational modeling
Most physics is based on continuous models and differen-

tial equations, and most scientific computing is focused on
numerical solutions of those equations. But the availability
of computational power has led to different kinds of models
and physical laws. This development is the subject of Com-
putational Modeling, an elective class for students in E:C and
ECE.

Topics include graph algorithms, small-world graphs and
scale-free networks; cellular automata and turmites; self-
organized criticality, long-tailed distributions, Zipf’s Law,
Pareto’s Law, long-range dependence; spectral analysis, fast
Fourier transform, 1/f noise; Bayesian statistics; event-driven
simulation, the heap implementation of a priority queue; agent-
based simulation, emergent properties; philosophy of science,
realism and instrumentalism, holism and reductionism.

This class includes several data structures and algorithms
that are usually covered in a Data Structures class. One
problem with conventional Data Structures is that the ideas
are presented without motivation. In Computational Modeling
we are able to present each data structure in a context with
an immediate application. For example, in the small world
module, students implement Dijkstra’s shortest path algorithm
and use it to measure the decrease in average path length as
“long links” are added to a random graph.

This class is a survey, by necessity, because most of the
material is relatively new; at this point it is hard to evaluate
which topics are fleeting curiosities and which will be im-
portant parts of science and engineering in the 21st Century.
To give the students the big picture, we started the semester
by surveying the treatment of these topics in popular non-
fiction. Books included Watts’s Six Degrees, Wolfram’s A New
Kind of Science, Kaufman’s At Home in the Universe, and
Surowiecki’s The Wisdom of Crowds.

In the second part of the semester, the students read aca-
demic articles on each topic, in many cases the seminal paper
where each major idea was presented; for example, Watts and
Strogatz’s paper on small world networks and Bak, Tang and
Wiesenfeld’s paper on self-organized criticality. We believe
that using popular non-fiction as a prelude to more detailed
technical material is an effective motivational tool.

III. THE COMPUTING CORE

Software Design is the entry point to Olin’s computing
core. The remainder of the core consists of two courses
intended to help students “learn to learn” in computer science:
Foundations of Computer Science and Software Systems.

A. Foundations of Computer Science

Foundations of Computer Science (FOCS) covers material
that is typically found in courses on automata and complexity
theory, algorithms, and programming languages. By presenting
a cross-section of this material, the class draws out connections
that may otherwise be less apparent. It also contrasts the kinds
of questions and approaches that are common within these
subdisciplines.

Clearly, a single class cannot cover the same amount of ma-
terial that is usually found in three separate classes. Although
we gain some efficiencies by combining presentation, most of
the compression comes at explicit loss of detail. Still, this class
is not a survey of the three areas or a shallow introduction.
The goal is not to teach students everything they might need
to know about theoretical computer science; instead, it is to
prepare them to learn anything that they might need to know.

Specifically, this means giving them the language and
intuition to understand automata and grammars, algorithms
and data structures, complexity and computability. In addition,
the course introduces two programming languages that are
different from those most students will have encountered:
Scheme, to teach the idea of programming without relying
on assignment, and Prolog, to demonstrate that it is possible
to separate programming from control flow.

For example, the course covers algorithms for sorting,
but focuses on the theoretical lower bound and the contrast
between naive sort algorithms and those that exploit the
logarithmic structure of trees (either in divide-and-conquer
or answer-accumulating fashion) to achieve that theoretical
bound. We compare the use of tree structure in sorting to its
application in search and identify the importance of balancing
trees to maintain the logarithmic property. We also look at
ways to break the assumptions of sorting’s theoretical lower
bound, such as knowing the range of objects to be sorted (in
a bin sort).

Scheme provides a nice start to the class, showing students
an approach to programming that is different from what
they know (typically Java or Python). Through Scheme, the
students learn to think in terms of functional programming,
with special emphasis on how to program without assignment.
Scheme also provides an opportunity to explore the role of
the stack in recursive procedure execution. After a brief side
excursion into array and linked list implementations of the
stack abstract data type, we return to contrast the stack-based
recursive pattern of execution with (stackless) iteration in the
form of tail recursion.

These patterns recur in other parts of the course. When
we discuss finite state automata, we find that precisely
the same distinction—between stack-based and stackless
control—exemplifies the limitations of finite languages when
contrasted with push-down automata. Further, the process of
repeatedly pushing onto and popping off of a stack is the
fundamental operation behind a depth first tree walk. This
same process of stack-based tree-walking is performed by
expression evaluation in Scheme as well as by parsers, Prolog



programs and logic reasoners, and the brute force computation
of solutions to NP-complete problems.

The final section of the course introduces the fundamental
limits of computation. This includes the introduction of the
Turing machine and demonstration of its universality as a
computational model, followed by the Halting theorem and
Godel’s Incompleteness Theorems.

An optional concurrent course gives students the opportu-
nity to apply the material covered in Foundations of Computer
Science. The projects are brief, generally two weeks for each
one. They include building small parsers, evaluators, finite
state animations, and other programs that reinforce the ideas
behind the techniques covered in the main class.

Students leave FOCS conversant with the major categories
of results in theoretical computer science and ready to enroll
in advanced coursework in these areas.

B. Software Systems
Software systems combines material from conventional

classes in networks, operating systems, and database imple-
mentation. In compressing three semesters into one, we have
to make decisions about what to leave out and what to cover
more quickly, but the volume of the material is not entirely
conserved, because there are cases where we can pack it more
efficiently.

For example, we start the semester with a two-parameter
model of communication: transmission time as a function of
latency and bandwidth. This model applies to networks, of
course, but it also applies to disk drives, buses, etc.

This combination of material also provides a broader view
of some topics. For example, most operating systems classes
talk about the implementation of general-purpose file systems.
In Software Systems, we are able to approach database imple-
mentation as an example of a file system designed to support
a particular set of operations. This view leads students to see
the connection between data structure design and file system
design: in both cases the designer chooses the structure that
provides the best performance for the expected workload; the
primary difference is the performance profile of the underlying
hardware.

A major theme of this class is experimental design, a
skill that is critical in graduate school and often important
in industry, but seldom taught explicitly. Students work on
a series of exercises that require them to characterize the
performance of various network and operating system features,
infer information about their implementations, and present
their findings in the form of short technical papers. These
exercises are described in more detail in a previous paper [3].

Combining networks and operating systems in one class
also reflects the technological trend toward distributed systems.
Where networking used to be a feature of an operating system,
it is now an integral part. In our approach it is natural
to address the design of distributed systems throughout the
semester, not at the end or as an advanced topic. This class
is also one of several places in the curriculum where we give
students explicit instruction in reading research papers.

So what gets left out? Although students write C code
that exercises various operating system features (for example,
constructing and sending a UDP packet), they don’t implement
or modify features at the kernel level. We don’t cover deadlock
detection or recovery, and synchronization is covered briefly
because we offer a half-class on the topic that goes into
more depth (see below). Finally, students only work with one
operating system (Linux) so they don’t see a wide range of
solutions.

In the second half of the semester, students work in teams
on projects of their own choosing, so they have an opportunity
to get into at least one of these topics in depth.

C. Synchronization
Synchronization is the study of software tools for managing

concurrent threads. It is usually a module in an Operating
Systems class, and usually includes semaphores, condition
variables, monitors, and a suite of problems that can be solved
with these tools. The classical synchronization problems are
abstractions of common patterns that occur in system software
and some applications. For example, the readers-writers prob-
lem is an abstraction of the constraints on concurrent access
to a mutable data structure.

This material is challenging, and it takes time for students
to gain facility with it. In a conventional operating systems
class, students may come to understand solutions to classical
problems, but few of them are able to formulate new problems
or construct solutions.

This course is an attempt to address these limitations by
extending the time students have to absorb and work with
this material. It is based on The Little Book of Semaphores,
which was written by one of us in an attempt to identify the
patterns that underlie synchronization code and assemble those
patterns into solutions to a suite of problems [4]. The book
is organized as a sequence of increasingly-difficult puzzles,
where each puzzle is followed by a hint and then a solution.

In our experience, most students are able to solve each
problem on their own, and the rest are able to understand
the solution when we discuss it in class. By the end of the
semester, students are able to assemble solutions to the most
complex synchronization problems we have found, and they
start to invent new problems, often based on synchronization
patterns they see in the real world. The latest edition of the
book includes several problems invented by students.

This topic gets more weight in our curriculum than in
most, in part because we think it is important and challenging
material that develops useful thinking skills, and in part
because it is a personal interest of one of us. More generally,
this course is an example of an approach we think is effective
for material that does not fit well in a sequence of modules;
we spread it over a longer interval to give students more time
to absorb it.

IV. WHY SHOULD ANYONE ELSE CARE?
Olin is not alone in feeling pressure to shrink the footprint of

the core computing curriculum. Many small CS departments



are in a similar position. (See, for example, the Computer
Science Small Department Initiative Report [5] and model
curricula for computer science at liberal arts colleges [6], [7],
[8].) Even in larger departments, there is pressure to add new
material as the field develops, to make connections to other
fields, and to give more attention to soft skills [9], [10].

A. Soft Skills and Learning to Learn
Industry continually reminds us that students need training

in teamwork, project work and communication as well as
opportunities to engage in meaningful projects that reinforce
existing knowledge and prompt further learning.

Teaching soft skills takes time and—to the extent that
students engage in self-directed exploration—yields less pre-
dictable coverage of core content. For example, when students
research and present topics to the class, they gain independent
learning skills and practice communication, but the particular
topics covered may vary and the extent of coverage may not
be as great as if the instructor taught the material directly.

Our experience suggests that a small footprint curriculum
can mitigate these problems: reducing the size of the core
leaves time for greater exploration; refactoring content from
multiple courses ensures coverage of fundamental material.

B. Teaching Multidisciplinary Students
Computer Science departments are increasingly facing de-

clining CS enrollments and simultaneously increasing interest
in hybrid programs such as Computational Biology or Inter-
active Media. Dickey’s survey of model curricula includes a
number of examples [11].

Students in these new disciplines need exposure to the
key ideas of computer science, but computing coursework
competes with coursework in other disciplines. Curricula in
these emerging areas must reduce the footprint of the com-
puting component to allow students to build background in
complementary disciplines and in hybrid courses. For example,
students in an interactive media program need to understand
computational thinking, but they also need to learn art and
technology. Computational biologists need grounding in both
biology and computer science.

A refactored core allows students to get a complete but
less detailed picture of computer science, rather than a subset
of a larger deeper curriculum. Additional coursework can be
tailored to the needs of the specific multidisciplinary program
or to more advanced study in computing itself.

V. CONCLUSIONS

This paper describes the constraints that drive our curricu-
lum and the courses we designed to satisfy those constraints. A
number of lessons emerged from this process that we believe
are applicable to other programs in computer science:

• Compressing the core of the CS curriculum is a necessity
at many schools, but may be a virtue at others. By
relieving the obligation of coverage, it facilitates other
kinds of innovation.

• Combining material from several standard classes creates
opportunities to make connections that are less apparent
in other curricula, and to move students to the research
frontier more quickly.

• Teaching introductory computer science in a low-risk
environment allows students to get over the initial hurdle
and achieve a level of programming skill appropriate for
their interests and needs.

• Teaching concurrency early in the introductory sequence
makes it easier to serve students with a wide range of
preparations, and develops a kind of thinking they are
likely to find valuable.

• Courses that serve non-CS majors along with majors can
help departments deal with variability in enrollments, en-
rich the classroom experience, and foster the development
of computer science as an interdisciplinary field of study.

REFERENCES

[1] M. Somerville, D. Anderson, H. Berbeco, and et al., “The Olin cur-
riculum: Thinking toward the future,” IEEE Transactions on Education,
vol. 48, no. 1, pp. 198–205, 2005.

[2] L. A. Stein, “What we’ve swept under the rug: Radically rethinking
CS1,” Computer Science Education, vol. 9, no. 2, pp. 118–129, 1998.

[3] A. B. Downey, “Teaching experimental design in an operating systems
class,” SIGCSE Bulletin, vol. 31, no. 1, pp. 316–320, 1999.

[4] ——, The Little Book of Semaphores. Green Tea Press, 2005, available
from http://greenteapress/semaphores.

[5] “The Computer Science Small Department Initiative (CS SDI) Report,”
ACM SIGCSE Bulletin, vol. 36, no. 1, pp. 332–333, March 2004,
http://cssdi.org.

[6] N. E. Gibbs and A. B. Tucker, “Model curriculum for a liberal arts
degree in computer science,” Communications of the ACM, March 1986.

[7] “Revised model curriculum for a liberal arts degree in computer sci-
ence,” Communications of the ACM, December 1996.

[8] K. Bruce, A. Brady, and et al, “The 2003 model curriculum for a liberal
arts degree in computer science,” in SIGCSE, 2004, special Session,
http://www.lacs.edu/model-curriculum.pdf.

[9] J. Kurose, B. Ryder, C. Kelemen, and et al., “Report of NSF Workshop
on Integrative Computing Education and Research, Northeast Work-
shop,” November 2005.

[10] Computer Science: Reflections on the Field, Reflections from the
Field. Committee on the Fundamentals of Computer Science: Chal-
lenges and Opportunities, Computer Science and Telecommunications
Board, National Research Council, National Academies Press, 2004,
http://www.nap.edu/catalog/11106.html.

[11] M. Dickey, “Model curricula for undergraduate pro-
grams in computer science and related fields,”
http://www.cs.washington.edu/homes/dickey/curricula/.


