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Preface

Why I wrote this book
Think Stats: Probability and Statistics for Programmers is a textbook for a new
kind of introductory prob-stat class. It emphasizes the use of statistics to
explore large datasets. It takes a computational approach, which has several
advantages:

• Students write programs as a way of developing and testing their un-
derstanding. For example, they write functions to compute a least
squares fit, residuals, and the coefficient of determination. Writing
and testing this code requires them to understand the concepts and
implicitly corrects misunderstandings.

• Students run experiments to test statistical behavior. For example,
they explore the Central Limit Theorem (CLT) by generating samples
from several distributions. When they see that the sum of values from
a Pareto distribution doesn’t converge to normal, they remember the
assumptions the CLT is based on.

• Some ideas that are hard to grasp mathematically are easy to under-
stand by simulation. For example, we approximate p-values by run-
ning Monte Carlo simulations, which reinforces the meaning of the
p-value.

• Using discrete distributions and computation makes it possible to
present topics like Bayesian estimation that are not usually covered
in an introductory class. For example, one exercise asks students to
compute the posterior distribution for the “German tank problem,”
which is difficult analytically but surprisingly easy computationally.

• Because students work in a general-purpose programming language
(Python), they are able to import data from almost any source. They
are not limited to data that has been cleaned and formatted for a par-
ticular statistics tool.
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The book lends itself to a project-based approach. In my class, students
work on a semester-long project that requires them to pose a statistical ques-
tion, find a dataset that can address it, and apply each of the techniques they
learn to their own data.

To demonstrate the kind of analysis I want students to do, the book presents
a case study that runs through all of the chapters. It uses data from two
sources:

• The National Survey of Family Growth (NSFG), conducted by the
U.S. Centers for Disease Control and Prevention (CDC) to gather
“information on family life, marriage and divorce, pregnancy, infer-
tility, use of contraception, and men’s and women’s health.” (See
http://cdc.gov/nchs/nsfg.htm.)

• The Behavioral Risk Factor Surveillance System (BRFSS), conducted
by the National Center for Chronic Disease Prevention and Health
Promotion to “track health conditions and risk behaviors in the United
States.” (See http://cdc.gov/BRFSS/.)

Other examples use data from the IRS, the U.S. Census, and the Boston
Marathon.

How I wrote this book

When people write a new textbook, they usually start by reading a stack of
old textbooks. As a result, most books contain the same material in pretty
much the same order. Often there are phrases, and errors, that propagate
from one book to the next; Stephen Jay Gould pointed out an example in his
essay, “The Case of the Creeping Fox Terrier1.”

I did not do that. In fact, I used almost no printed material while I was
writing this book, for several reasons:

• My goal was to explore a new approach to this material, so I didn’t
want much exposure to existing approaches.

• Since I am making this book available under a free license, I wanted to
make sure that no part of it was encumbered by copyright restrictions.

1A breed of dog that is about half the size of a Hyracotherium (see http://wikipedia.

org/wiki/Hyracotherium).
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• Many readers of my books don’t have access to libraries of printed ma-
terial, so I tried to make references to resources that are freely available
on the Internet.

• Proponents of old media think that the exclusive use of electronic re-
sources is lazy and unreliable. They might be right about the first part,
but I think they are wrong about the second, so I wanted to test my
theory.

The resource I used more than any other is Wikipedia, the bugbear of li-
brarians everywhere. In general, the articles I read on statistical topics were
very good (although I made a few small changes along the way). I include
references to Wikipedia pages throughout the book and I encourage you to
follow those links; in many cases, the Wikipedia page picks up where my
description leaves off. The vocabulary and notation in this book are gener-
ally consistent with Wikipedia, unless I had a good reason to deviate.

Other resources I found useful were Wolfram MathWorld and (of course)
Google. I also used two books, David MacKay’s Information Theory, In-
ference, and Learning Algorithms, which is the book that got me hooked on
Bayesian statistics, and Press et al.’s Numerical Recipes in C. But both books
are available online, so I don’t feel too bad.

Allen B. Downey
Needham MA

Allen B. Downey is a Professor of Computer Science at the Franklin W. Olin
College of Engineering.
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Chapter 1

Statistical thinking for
programmers

This book is about turning data into knowledge. Data is cheap (at least
relatively); knowledge is harder to come by.

I will present three related pieces:

Probability is the study of random events. Most people have an intuitive
understanding of degrees of probability, which is why you can use
words like “probably” and “unlikely” without special training, but we
will talk about how to make quantitative claims about those degrees.

Statistics is the discipline of using data samples to support claims about
populations. Most statistical analysis is based on probability, which is
why these pieces are usually presented together.

Computation is a tool that is well-suited to quantitative analysis, and
computers are commonly used to process statistics. Also, computa-
tional experiments are useful for exploring concepts in probability and
statistics.

The thesis of this book is that if you know how to program, you can use
that skill to help you understand probability and statistics. These topics are
often presented from a mathematical perspective, and that approach works
well for some people. But some important ideas in this area are hard to work
with mathematically and relatively easy to approach computationally.

The rest of this chapter presents a case study motivated by a question I
heard when my wife and I were expecting our first child: do first babies
tend to arrive late?
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1.1 Do first babies arrive late?

If you Google this question, you will find plenty of discussion. Some people
claim it’s true, others say it’s a myth, and some people say it’s the other way
around: first babies come early.

In many of these discussions, people provide data to support their claims. I
found many examples like these:

“My two friends that have given birth recently to their first ba-
bies, BOTH went almost 2 weeks overdue before going into
labour or being induced.”

“My first one came 2 weeks late and now I think the second one
is going to come out two weeks early!!”

“I don’t think that can be true because my sister was my
mother’s first and she was early, as with many of my cousins.”

Reports like these are called anecdotal evidence because they are based on
data that is unpublished and usually personal. In casual conversation, there
is nothing wrong with anecdotes, so I don’t mean to pick on the people I
quoted.

But we might want evidence that is more persuasive and an answer that is
more reliable. By those standards, anecdotal evidence usually fails, because:

Small number of observations: If the gestation period is longer for first ba-
bies, the difference is probably small compared to the natural varia-
tion. In that case, we might have to compare a large number of preg-
nancies to be sure that a difference exists.

Selection bias: People who join a discussion of this question might be in-
terested because their first babies were late. In that case the process of
selecting data would bias the results.

Confirmation bias: People who believe the claim might be more likely to
contribute examples that confirm it. People who doubt the claim are
more likely to cite counterexamples.

Inaccuracy: Anecdotes are often personal stories, and often misremem-
bered, misrepresented, repeated inaccurately, etc.

So how can we do better?
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1.2 A statistical approach

To address the limitations of anecdotes, we will use the tools of statistics,
which include:

Data collection: We will use data from a large national survey that was de-
signed explicitly with the goal of generating statistically valid infer-
ences about the U.S. population.

Descriptive statistics: We will generate statistics that summarize the data
concisely, and evaluate different ways to visualize data.

Exploratory data analysis: We will look for patterns, differences, and other
features that address the questions we are interested in. At the same
time we will check for inconsistencies and identify limitations.

Hypothesis testing: Where we see apparent effects, like a difference be-
tween two groups, we will evaluate whether the effect is real, or
whether it might have happened by chance.

Estimation: We will use data from a sample to estimate characteristics of
the general population.

By performing these steps with care to avoid pitfalls, we can reach conclu-
sions that are more justifiable and more likely to be correct.

1.3 The National Survey of Family Growth

Since 1973 the U.S. Centers for Disease Control and Prevention (CDC) have
conducted the National Survey of Family Growth (NSFG), which is in-
tended to gather “information on family life, marriage and divorce, preg-
nancy, infertility, use of contraception, and men’s and women’s health. The
survey results are used ... to plan health services and health education pro-
grams, and to do statistical studies of families, fertility, and health.”1

We will use data collected by this survey to investigate whether first babies
tend to come late, and other questions. In order to use this data effectively,
we have to understand the design of the study.

1See http://cdc.gov/nchs/nsfg.htm.



4 Chapter 1. Statistical thinking for programmers

The NSFG is a cross-sectional study, which means that it captures a snap-
shot of a group at a point in time. The most common alternative is a lon-
gitudinal study, which observes a group repeatedly over a period of time.

The NSFG has been conducted seven times; each deployment is called a cy-
cle. We will be using data from Cycle 6, which was conducted from January
2002 to March 2003.

The goal of the survey is to draw conclusions about a population; the target
population of the NSFG is people in the United States aged 15-44.

The people who participate in a survey are called respondents; a group of
respondents is called a cohort. In general, cross-sectional studies are meant
to be representative, which means that every member of the target popu-
lation has an equal chance of participating. Of course that ideal is hard to
achieve in practice, but people who conduct surveys come as close as they
can.

The NSFG is not representative; instead it is deliberately oversampled.
The designers of the study recruited three groups—Hispanics, African-
Americans and teenagers—at rates higher than their representation in the
U.S. population. The reason for oversampling is to make sure that the num-
ber of respondents in each of these groups is large enough to draw valid
statistical inferences.

Of course, the drawback of oversampling is that it is not as easy to draw
conclusions about the general population based on statistics from the sur-
vey. We will come back to this point later.

Exercise 1.1 Although the NSFG has been conducted seven times,
it is not a longitudinal study. Read the Wikipedia pages http:

//wikipedia.org/wiki/Cross-sectional_study and http://wikipedia.

org/wiki/Longitudinal_study to make sure you understand why not.

Exercise 1.2 In this exercise, you will download data from the NSFG; we
will use this data throughout the book.

1. Go to http://thinkstats.com/nsfg.html. Read the terms of use for
this data and click “I accept these terms” (assuming that you do).

2. Download the files named 2002FemResp.dat.gz and
2002FemPreg.dat.gz. The first is the respondent file, which con-
tains one line for each of the 7,643 female respondents. The second
file contains one line for each pregnancy reported by a respondent.
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3. Online documentation of the survey is at http://www.icpsr.umich.
edu/nsfg6. Browse the sections in the left navigation bar to get a sense
of what data are included. You can also read the questionnaires at
http://cdc.gov/nchs/data/nsfg/nsfg_2002_questionnaires.htm.

4. The web page for this book provides code to process the data files from
the NSFG. Download http://thinkstats.com/survey.py and run it
in the same directory you put the data files in. It should read the data
files and print the number of lines in each:

Number of respondents 7643

Number of pregnancies 13593

5. Browse the code to get a sense of what it does. The next section ex-
plains how it works.

1.4 Tables and records

The poet-philosopher Steve Martin once said:

“Oeuf” means egg, “chapeau” means hat. It’s like those French
have a different word for everything.

Like the French, database programmers speak a slightly different language,
and since we’re working with a database we need to learn some vocabulary.

Each line in the respondents file contains information about one respondent.
This information is called a record. The variables that make up a record are
called fields. A collection of records is called a table.

If you read survey.py you will see class definitions for Record, which is an
object that represents a record, and Table, which represents a table.

There are two subclasses of Record—Respondent and Pregnancy—which
contain records from the respondent and pregnancy tables. For the time
being, these classes are empty; in particular, there is no init method to ini-
tialize their attributes. Instead we will use Table.MakeRecord to convert a
line of text into a Record object.

There are also two subclasses of Table: Respondents and Pregnancies. The
init method in each class specifies the default name of the data file and the
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type of record to create. Each Table object has an attribute named records,
which is a list of Record objects.

For each Table, the GetFields method returns a list of tuples that specify
the fields from the record that will be stored as attributes in each Record

object. (You might want to read that last sentence twice.)

For example, here is Pregnancies.GetFields:

def GetFields(self):

return [

('caseid', 1, 12, int),

('prglength', 275, 276, int),

('outcome', 277, 277, int),

('birthord', 278, 279, int),

('finalwgt', 423, 440, float),

]

The first tuple says that the field caseid is in columns 1 through 12 and it’s
an integer. Each tuple contains the following information:

field: The name of the attribute where the field will be stored. Most of the
time I use the name from the NSFG codebook, converted to all lower
case.

start: The index of the starting column for this field. For example, the start
index for caseid is 1. You can look up these indices in the NSFG
codebook at http://nsfg.icpsr.umich.edu/cocoon/WebDocs/NSFG/

public/index.htm.

end: The index of the ending column for this field; for example, the end
index for caseid is 12. Unlike in Python, the end index is inclusive.

conversion function: A function that takes a string and converts it to an
appropriate type. You can use built-in functions, like int and float,
or user-defined functions. If the conversion fails, the attribute gets the
string value 'NA'. If you don’t want to convert a field, you can provide
an identity function or use str.

For pregnancy records, we extract the following variables:

caseid is the integer ID of the respondent.

prglength is the integer duration of the pregnancy in weeks.
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outcome is an integer code for the outcome of the pregnancy. The code 1
indicates a live birth.

birthord is the integer birth order of each live birth; for example, the code
for a first child is 1. For outcomes other than live birth, this field is
blank.

finalwgt is the statistical weight associated with the respondent. It is a
floating-point value that indicates the number of people in the U.S.
population this respondent represents. Members of oversampled
groups have lower weights.

If you read the casebook carefully, you will see that most of these variables
are recodes, which means that they are not part of the raw data collected by
the survey, but they are calculated using the raw data.

For example, prglength for live births is equal to the raw variable wksgest

(weeks of gestation) if it is available; otherwise it is estimated using mosgest

* 4.33 (months of gestation times the average number of weeks in a
month).

Recodes are often based on logic that checks the consistency and accuracy
of the data. In general it is a good idea to use recodes unless there is a
compelling reason to process the raw data yourself.

You might also notice that Pregnancies has a method called Recode that
does some additional checking and recoding.

Exercise 1.3 In this exercise you will write a program to explore the data in
the Pregnancies table.

1. In the directory where you put survey.py and the data files, create a
file named first.py and type or paste in the following code:

import survey

table = survey.Pregnancies()

table.ReadRecords()

print 'Number of pregnancies', len(table.records)

The result should be 13593 pregnancies.

2. Write a loop that iterates table and counts the number of live births.
Find the documentation of outcome and confirm that your result is
consistent with the summary in the documentation.
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3. Modify the loop to partition the live birth records into two groups, one
for first babies and one for the others. Again, read the documentation
of birthord to see if your results are consistent.

When you are working with a new dataset, these kinds of checks
are useful for finding errors and inconsistencies in the data, detect-
ing bugs in your program, and checking your understanding of the
way the fields are encoded.

4. Compute the average pregnancy length (in weeks) for first babies and
others. Is there a difference between the groups? How big is it?

You can download a solution to this exercise from http://thinkstats.com/

first.py.

1.5 Significance

In the previous exercise, you compared the gestation period for first babies
and others; if things worked out, you found that first babies are born about
13 hours later, on average.

A difference like that is called an apparent effect; that is, there might be
something going on, but we are not yet sure. There are several questions
we still want to ask:

• If the two groups have different means, what about other summary
statistics, like median and variance? Can we be more precise about
how the groups differ?

• Is it possible that the difference we saw could occur by chance, even
if the groups we compared were actually the same? If so, we would
conclude that the effect was not statistically significant.

• Is it possible that the apparent effect is due to selection bias or some
other error in the experimental setup? If so, then we might conclude
that the effect is an artifact; that is, something we created (by accident)
rather than found.

Answering these questions will take most of the rest of this book.

Exercise 1.4 The best way to learn about statistics is to work on a project
you are interested in. Is there a question like, “Do first babies arrive late,”
that you would like to investigate?
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Think about questions you find personally interesting, or items of conven-
tional wisdom, or controversial topics, or questions that have political con-
sequences, and see if you can formulate a question that lends itself to statis-
tical inquiry.

Look for data to help you address the question. Governments are good
sources because data from public research is often freely available2.

Another way to find data is Wolfram Alpha, which is a curated collection of
good-quality datasets at http://wolframalpha.com. Results from Wolfram
Alpha are subject to copyright restrictions; you might want to check the
terms before you commit yourself.

Google and other search engines can also help you find data, but it can be
harder to evaluate the quality of resources on the web.

If it seems like someone has answered your question, look closely to see
whether the answer is justified. There might be flaws in the data or the
analysis that make the conclusion unreliable. In that case you could perform
a different analysis of the same data, or look for a better source of data.

If you find a published paper that addresses your question, you should be
able to get the raw data. Many authors make their data available on the
web, but for sensitive data you might have to write to the authors, provide
information about how you plan to use the data, or agree to certain terms
of use. Be persistent!

1.6 Glossary
anecdotal evidence: Evidence, often personal, that is collected casually

rather than by a well-designed study.

population: A group we are interested in studying, often a group of people,
but the term is also used for animals, vegetables and minerals3.

cross-sectional study: A study that collects data about a population at a
particular point in time.

longitudinal study: A study that follows a population over time, collecting
data from the same group repeatedly.

2On the day I wrote this paragraph, a court in the UK ruled that the Freedom of Infor-
mation Act applies to scientific research data.

3If you don’t recognize this phrase, see http://wikipedia.org/wiki/Twenty_

Questions.
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respondent: A person who responds to a survey.

cohort: A group of respondents

sample: The subset of a population used to collect data.

representative: A sample is representative if every member of the popula-
tion has the same chance of being in the sample.

oversampling: The technique of increasing the representation of a sub-
population in order to avoid errors due to small sample sizes.

record: In a database, a collection of information about a single person or
other object of study.

field: In a database, one of the named variables that makes up a record.

table: In a database, a collection of records.

raw data: Values collected and recorded with little or no checking, calcula-
tion or interpretation.

recode: A value that is generated by calculation and other logic applied to
raw data.

summary statistic: The result of a computation that reduces a dataset to a
single number (or at least a smaller set of numbers) that captures some
characteristic of the data.

apparent effect: A measurement or summary statistic that suggests that
something interesting is happening.

statistically significant: An apparent effect is statistically significant if it is
unlikely to occur by chance.

artifact: An apparent effect that is caused by bias, measurement error, or
some other kind of error.



Chapter 2

Descriptive statistics

2.1 Means and averages

In the previous chapter, I mentioned three summary statistics—mean, vari-
ance and median—without explaining what they are. So before we go any
farther, let’s take care of that.

If you have a sample of n values, xi, the mean, µ, is the sum of the values
divided by the number of values; in other words

µ =
1
n ∑

i
xi

The words “mean” and “average” are sometimes used interchangeably, but
I will maintain this distinction:

• The “mean” of a sample is the summary statistic computed with the
previous formula.

• An “average” is one of many summary statistics you might choose to
describe the typical value or the central tendency of a sample.

Sometimes the mean is a good description of a set of values. For example,
apples are all pretty much the same size (at least the ones sold in supermar-
kets). So if I buy 6 apples and the total weight is 3 pounds, it would be a
reasonable summary to say they are about a half pound each.

But pumpkins are more diverse. Suppose I grow several varieties in my
garden, and one day I harvest three decorative pumpkins that are 1 pound



12 Chapter 2. Descriptive statistics

each, two pie pumpkins that are 3 pounds each, and one Atlantic Gi-
ant® pumpkin that weighs 591 pounds. The mean of this sample is 100
pounds, but if I told you “The average pumpkin in my garden is 100
pounds,” that would be wrong, or at least misleading.

In this example, there is no meaningful average because there is no typical
pumpkin.

2.2 Variance

If there is no single number that summarizes pumpkin weights, we can do
a little better with two numbers: mean and variance.

In the same way that the mean is intended to describe the central tendency,
variance is intended to describe the spread. The variance of a set of values
is

σ2 =
1
n ∑

i
(xi − µ)2

The term xi-µ is called the “deviation from the mean,” so variance is the
mean squared deviation, which is why it is denoted σ2. The square root of
variance, σ, is called the standard deviation.

By itself, variance is hard to interpret. One problem is that the units are
strange; in this case the measurements are in pounds, so the variance is in
pounds squared. Standard deviation is more meaningful; in this case the
units are pounds.

Exercise 2.1 For the exercises in this chapter you should download http:

//thinkstats.com/thinkstats.py, which contains general-purpose func-
tions we will use throughout the book. You can read documentation of
these functions in http://thinkstats.com/thinkstats.html.

Write a function called Pumpkin that uses functions from thinkstats.py

to compute the mean, variance and standard deviation of the pumpkins
weights in the previous section.

Exercise 2.2 Reusing code from survey.py and first.py, compute the stan-
dard deviation of gestation time for first babies and others. Does it look like
the spread is the same for the two groups?

How big is the difference in the means compared to these standard devia-
tions? What does this comparison suggest about the statistical significance
of the difference?
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If you have prior experience, you might have seen a formula for variance
with n − 1 in the denominator, rather than n. This statistic is called the
“sample variance,” and it is used to estimate the variance in a population
using a sample. We will come back to this in Chapter 8.

2.3 Distributions

Summary statistics are concise, but dangerous, because they obscure the
data. An alternative is to look at the distribution of the data, which de-
scribes how often each value appears.

The most common representation of a distribution is a histogram, which is
a graph that shows the frequency or probability of each value.

In this context, frequency means the number of times a value appears in a
dataset—it has nothing to do with the pitch of a sound or tuning of a radio
signal. A probability is a frequency expressed as a fraction of the sample
size, n.

In Python, an efficient way to compute frequencies is with a dictionary.
Given a sequence of values, t:

hist = {}

for x in t:

hist[x] = hist.get(x, 0) + 1

The result is a dictionary that maps from values to frequencies. To get from
frequencies to probabilities, we divide through by n, which is called nor-
malization:

n = float(len(t))

pmf = {}

for x, freq in hist.items():

pmf[x] = freq / n

The normalized histogram is called a PMF, which stands for “probability
mass function”; that is, it’s a function that maps from values to probabilities
(I’ll explain “mass” in Section 6.3).

It might be confusing to call a Python dictionary a function. In mathematics,
a function is a map from one set of values to another. In Python, we usually
represent mathematical functions with function objects, but in this case we
are using a dictionary (dictionaries are also called “maps,” if that helps).
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2.4 Representing histograms

I wrote a Python module called Pmf.py that contains class definitions for
Hist objects, which represent histograms, and Pmf objects, which represent
PMFs. You can read the documentation at thinkstats.com/Pmf.html and
download the code from thinkstats.com/Pmf.py.

The function MakeHistFromList takes a list of values and returns a new Hist
object. You can test it in Python’s interactive mode:

>>> import Pmf

>>> hist = Pmf.MakeHistFromList([1, 2, 2, 3, 5])

>>> print hist

<Pmf.Hist object at 0xb76cf68c>

Pmf.Hist means that this object is a member of the Hist class, which is de-
fined in the Pmf module. In general, I use upper case letters for the names
of classes and functions, and lower case letters for variables.

Hist objects provide methods to look up values and their probabilities. Freq
takes a value and returns its frequency:

>>> hist.Freq(2)

2

If you look up a value that has never appeared, the frequency is 0.

>>> hist.Freq(4)

0

Values returns an unsorted list of the values in the Hist:

>>> hist.Values()

[1, 5, 3, 2]

To loop through the values in order, you can use the built-in function
sorted:

for val in sorted(hist.Values()):

print val, hist.Freq(val)

If you are planning to look up all of the frequencies, it is more efficient to
use Items, which returns an unsorted list of value-frequency pairs:

for val, freq in hist.Items():

print val, freq
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Exercise 2.3 The mode of a distribution is the most frequent value (see http:
//wikipedia.org/wiki/Mode_(statistics)). Write a function called Mode

that takes a Hist object and returns the most frequent value.

As a more challenging version, write a function called AllModes that takes
a Hist object and returns a list of value-frequency pairs in descending or-
der of frequency. Hint: the operator module provides a function called
itemgetter which you can pass as a key to sorted.

2.5 Plotting histograms
There are a number of Python packages for making figures and graphs. The
one I will demonstrate is pyplot, which is part of the matplotlib package
at http://matplotlib.sourceforge.net.

This package is included in many Python installations. To see whether you
have it, launch the Python interpreter and run:

import matplotlib.pyplot as pyplot

pyplot.pie([1,2,3])

pyplot.show()

If you have matplotlib you should see a simple pie chart; otherwise you
will have to install it.

Histograms and PMFs are most often plotted as bar charts. The pyplot

function to draw a bar chart is bar. Hist objects provide a method called
Render that returns a sorted list of values and a list of the corresponding
frequencies, which is the format bar expects:

>>> vals, freqs = hist.Render()

>>> rectangles = pyplot.bar(vals, freqs)

>>> pyplot.show()

I wrote a module called myplot.py that provides functions for plotting his-
tograms, PMFs and other objects we will see soon. You can read the doc-
umentation at thinkstats.com/myplot.html and download the code from
thinkstats.com/myplot.py. Or you can use pyplot directly, if you prefer.
Either way, you can find the documentation for pyplot on the web.

Figure 2.1 shows histograms of pregnancy lengths for first babies and oth-
ers.

Histograms are useful because they make the following features immedi-
ately apparent:
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Figure 2.1: Histogram of pregnancy lengths.

Mode: The most common value in a distribution is called the mode. In
Figure 2.1 there is a clear mode at 39 weeks. In this case, the mode is
the summary statistic that does the best job of describing the typical
value.

Shape: Around the mode, the distribution is asymmetric; it drops off
quickly to the right and more slowly to the left. From a medical point
of view, this makes sense. Babies are often born early, but seldom later
than 42 weeks. Also, the right side of the distribution is truncated
because doctors often intervene after 42 weeks.

Outliers: Values far from the mode are called outliers. Some of these are
just unusual cases, like babies born at 30 weeks. But many of them are
probably due to errors, either in the reporting or recording of data.

Although histograms make some features apparent, they are usually not
useful for comparing two distributions. In this example, there are fewer
“first babies” than “others,” so some of the apparent differences in the his-
tograms are due to sample sizes. We can address this problem using PMFs.

2.6 Representing PMFs

Pmf.py provides a class called Pmf that represents PMFs. The notation can
be confusing, but here it is: Pmf is the name of the module and also the class,
so the full name of the class is Pmf.Pmf. I often use pmf as a variable name.
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Finally, in the text, I use PMF to refer to the general concept of a probability
mass function, independent of my implementation.

To create a Pmf object, use MakePmfFromList, which takes a list of values:

>>> import Pmf

>>> pmf = Pmf.MakePmfFromList([1, 2, 2, 3, 5])

>>> print pmf

<Pmf.Pmf object at 0xb76cf68c>

Pmf and Hist objects are similar in many ways. The methods Values and
Items work the same way for both types. The biggest difference is that
a Hist maps from values to integer counters; a Pmf maps from values to
floating-point probabilities.

To look up the probability associated with a value, use Prob:

>>> pmf.Prob(2)

0.4

You can modify an existing Pmf by incrementing the probability associated
with a value:

>>> pmf.Incr(2, 0.2)

>>> pmf.Prob(2)

0.6

Or you can multiply a probability by a factor:

>>> pmf.Mult(2, 0.5)

>>> pmf.Prob(2)

0.3

If you modify a Pmf, the result may not be normalized; that is, the probabil-
ities may no longer add up to 1. To check, you can call Total, which returns
the sum of the probabilities:

>>> pmf.Total()

0.9

To renormalize, call Normalize:

>>> pmf.Normalize()

>>> pmf.Total()

1.0

Pmf objects provide a Copy method so you can make and modify a copy
without affecting the original.
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Exercise 2.4 According to Wikipedia, “Survival analysis is a branch of statis-
tics which deals with death in biological organisms and failure in mechani-
cal systems;” see http://wikipedia.org/wiki/Survival_analysis.

As part of survival analysis, it is often useful to compute the remaining life-
time of, for example, a mechanical component. If we know the distribution
of lifetimes and the age of the component, we can compute the distribution
of remaining lifetimes.

Write a function called RemainingLifetime that takes a Pmf of lifetimes and
an age, and returns a new Pmf that represents the distribution of remaining
lifetimes.

Exercise 2.5 In Section 2.1 we computed the mean of a sample by adding
up the elements and dividing by n. If you are given a PMF, you can still
compute the mean, but the process is slightly different:

µ = ∑
i

pixi

where the xi are the unique values in the PMF and pi=PMF(xi). Similarly,
you can compute variance like this:

σ2 = ∑
i

pi(xi − µ)2

Write functions called PmfMean and PmfVar that take a Pmf object and com-
pute the mean and variance. To test these methods, check that they are
consistent with the methods Mean and Var in Pmf.py.

2.7 Plotting PMFs

There are two common ways to plot Pmfs:

• To plot a Pmf as a bar graph, you can use pyplot.bar or myplot.Hist.
Bar graphs are most useful if the number of values in the Pmf is small.

• To plot a Pmf as a line, you can use pyplot.plot or myplot.Pmf. Line
plots are most useful if there are a large number of values and the Pmf
is smooth.

Figure 2.2 shows the PMF of pregnancy lengths as a bar graph. Using the
PMF, we can see more clearly where the distributions differ. First babies
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Figure 2.2: PMF of pregnancy lengths.

seem to be less likely to arrive on time (week 39) and more likely to be a late
(weeks 41 and 42).

The code that generates the figures in this chapters is available from http:

//thinkstats.com/descriptive.py. To run it, you will need the modules
it imports and the data from the NSFG (see Section 1.3).

Note: pyplot provides a function called hist that takes a sequence of val-
ues, computes the histogram and plots it. Since I use Hist objects, I usually
don’t use pyplot.hist.

2.8 Outliers

Outliers are values that are far from the central tendency. Outliers might
be caused by errors in collecting or processing the data, or they might be
correct but unusual measurements. It is always a good idea to check for
outliers, and sometimes it is useful and appropriate to discard them.

In the list of pregnancy lengths for live births, the 10 lowest values are {0, 4,
9, 13, 17, 17, 18, 19, 20, 21}. Values below 20 weeks are certainly errors, and
values higher than 30 weeks are probably legitimate. But values in between
are hard to interpret.

On the other end, the highest values are:

weeks count

43 148
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Figure 2.3: Difference in percentage, by week.
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Again, some values are almost certainly errors, but it is hard to know for
sure. One option is to trim the data by discarding some fraction of the high-
est and lowest values (see http://wikipedia.org/wiki/Truncated_mean).

2.9 Other visualizations

Histograms and PMFs are useful for exploratory data analysis; once you
have an idea what is going on, it is often useful to design a visualization
that focuses on the apparent effect.

In the NSFG data, the biggest differences in the distributions are near the
mode. So it makes sense to zoom in on that part of the graph, and to trans-
form the data to emphasize differences.

Figure 2.3 shows the difference between the PMFs for weeks 35–45. I multi-
plied by 100 to express the differences in percentage points.

This figure makes the pattern clearer: first babies are less likely to be born
in week 39, and somewhat more likely to be born in weeks 41 and 42.
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2.10 Relative risk

We started with the question, “Do first babies arrive late?” To make that
more precise, let’s say that a baby is early if it is born during Week 37 or
earlier, on time if it is born during Week 38, 39 or 40, and late if it is born
during Week 41 or later. Ranges like these that are used to group data are
called bins.

Exercise 2.6 Create a file named risk.py. Write functions named
ProbEarly, ProbOnTime and ProbLate that take a PMF and compute the frac-
tion of births that fall into each bin. Hint: write a generalized function that
these functions call.

Make three PMFs, one for first babies, one for others, and one for all live
births. For each PMF, compute the probability of being born early, on time,
or late.

One way to summarize data like this is with relative risk, which is a ratio
of two probabilities. For example, the probability that a first baby is born
early is 18.2%. For other babies it is 16.8%, so the relative risk is 1.08. That
means that first babies are about 8% more likely to be early.

Write code to confirm that result, then compute the relative risks of being
born on time and being late. You can download a solution from http://

thinkstats.com/risk.py.

2.11 Conditional probability

Imagine that someone you know is pregnant, and it is the beginning of
Week 39. What is the chance that the baby will be born in the next week?
How much does the answer change if it’s a first baby?

We can answer these questions by computing a conditional probability,
which is (ahem!) a probability that depends on a condition. In this case, the
condition is that we know the baby didn’t arrive during Weeks 0–38.

Here’s one way to do it:

1. Given a PMF, generate a fake cohort of 1000 pregnancies. For each
number of weeks, x, the number of pregnancies with duration x is
1000 PMF(x).

2. Remove from the cohort all pregnancies with length less than 39.
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3. Compute the PMF of the remaining durations; the result is the condi-
tional PMF.

4. Evaluate the conditional PMF at x = 39 weeks.

This algorithm is conceptually clear, but not very efficient. A simple alter-
native is to remove from the distribution the values less than 39 and then
renormalize.

Exercise 2.7 Write a function that implements either of these algorithms and
computes the probability that a baby will be born during Week 39, given
that it was not born prior to Week 39.

Generalize the function to compute the probability that a baby will be born
during Week x, given that it was not born prior to Week x, for all x. Plot this
value as a function of x for first babies and others.

You can download a solution to this problem from http://thinkstats.

com/conditional.py.

2.12 Reporting results

At this point we have explored the data and seen several apparent effects.
For now, let’s assume that these effects are real (but let’s remember that it’s
an assumption). How should we report these results?

The answer might depend on who is asking the question. For example, a
scientist might be interested in any (real) effect, no matter how small. A
doctor might only care about effects that are clinically significant; that is,
differences that affect treatment decisions. A pregnant woman might be
interested in results that are relevant to her, like the conditional probabilities
in the previous section.

How you report results also depends on your goals. If you are trying to
demonstrate the significance of an effect, you might choose summary statis-
tics, like relative risk, that emphasize differences. If you are trying to reas-
sure a patient, you might choose statistics that put the differences in context.

Exercise 2.8 Based on the results from the previous exercises, suppose you
were asked to summarize what you learned about whether first babies ar-
rive late.
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Which summary statistics would you use if you wanted to get a story on
the evening news? Which ones would you use if you wanted to reassure an
anxious patient?

Finally, imagine that you are Cecil Adams, author of The Straight Dope
(http://straightdope.com), and your job is to answer the question, “Do
first babies arrive late?” Write a paragraph that uses the results in this chap-
ter to answer the question clearly, precisely, and accurately.

2.13 Glossary
central tendency: A characteristic of a sample or population; intuitively, it

is the most average value.

spread: A characteristic of a sample or population; intuitively, it describes
how much variability there is.

variance: A summary statistic often used to quantify spread.

standard deviation: The square root of variance, also used as a measure of
spread.

frequency: The number of times a value appears in a sample.

histogram: A mapping from values to frequencies, or a graph that shows
this mapping.

probability: A frequency expressed as a fraction of the sample size.

normalization: The process of dividing a frequency by a sample size to get
a probability.

distribution: A summary of the values that appear in a sample and the
frequency, or probability, of each.

PMF: Probability mass function: a representation of a distribution as a
function that maps from values to probabilities.

mode: The most frequent value in a sample.

outlier: A value far from the central tendency.

trim: To remove outliers from a dataset.

bin: A range used to group nearby values.
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relative risk: A ratio of two probabilities, often used to measure a differ-
ence between distributions.

conditional probability: A probability computed under the assumption
that some condition holds.

clinically significant: A result, like a difference between groups, that is rel-
evant in practice.
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Cumulative distribution functions

3.1 The class size paradox

At many American colleges and universities, the student-to-faculty ratio is
about 10:1. But students are often surprised to discover that their average
class size is bigger than 10. There are two reasons for the discrepancy:

• Students typically take 4–5 classes per semester, but professors often
teach 1 or 2.

• The number of students who enjoy a small class is small, but the num-
ber of students in a large class is (ahem!) large.

The first effect is obvious (at least once it is pointed out); the second is more
subtle. So let’s look at an example. Suppose that a college offers 65 classes
in a given semester, with the following distribution of sizes:

size count

5- 9 8

10-14 8

15-19 14

20-24 4

25-29 6

30-34 12

35-39 8

40-44 3

45-49 2
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If you ask the Dean for the average class size, he would construct a PMF,
compute the mean, and report that the average class size is 24.

But if you survey a group of students, ask them how many students are in
their classes, and compute the mean, you would think that the average class
size was higher.

Exercise 3.1 Build a PMF of these data and compute the mean as perceived
by the Dean. Since the data have been grouped in bins, you can use the
mid-point of each bin.

Now find the distribution of class sizes as perceived by students and com-
pute its mean.

Suppose you want to find the distribution of class sizes at a college, but you
can’t get reliable data from the Dean. An alternative is to choose a random
sample of students and ask them the number of students in each of their
classes. Then you could compute the PMF of their responses.

The result would be biased because large classes would be oversampled,
but you could estimate the actual distribution of class sizes by applying an
appropriate transformation to the observed distribution.

Write a function called UnbiasPmf that takes the PMF of the observed values
and returns a new Pmf object that estimates the distribution of class sizes.

You can download a solution to this problem from http://thinkstats.

com/class_size.py.

Exercise 3.2 In most foot races, everyone starts at the same time. If you are
a fast runner, you usually pass a lot of people at the beginning of the race,
but after a few miles everyone around you is going at the same speed.

When I ran a long-distance (209 miles) relay race for the first time, I noticed
an odd phenomenon: when I overtook another runner, I was usually much
faster, and when another runner overtook me, he was usually much faster.

At first I thought that the distribution of speeds might be bimodal; that is,
there were many slow runners and many fast runners, but few at my speed.

Then I realized that I was the victim of selection bias. The race was unusual
in two ways: it used a staggered start, so teams started at different times;
also, many teams included runners at different levels of ability.

As a result, runners were spread out along the course with little relationship
between speed and location. When I started running my leg, the runners
near me were (pretty much) a random sample of the runners in the race.
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So where does the bias come from? During my time on the course, the
chance of overtaking a runner, or being overtaken, is proportional to the
difference in our speeds. To see why, think about the extremes. If another
runner is going at the same speed as me, neither of us will overtake the
other. If someone is going so fast that they cover the entire course while I
am running, they are certain to overtake me.

Write a function called BiasPmf that takes a Pmf representing the actual
distribution of runners’ speeds, and the speed of a running observer, and
returns a new Pmf representing the distribution of runners’ speeds as seen
by the observer.

To test your function, get the distribution of speeds from a normal road race
(not a relay). I wrote a program that reads the results from the James Joyce
Ramble 10K in Dedham MA and converts the pace of each runner to MPH.
Download it from http://thinkstats.com/relay.py. Run it and look at
the PMF of speeds.

Now compute the distribution of speeds you would observe if you ran a
relay race at 7.5 MPH with this group of runners. You can download a
solution from http://thinkstats.com/relay_soln.py

3.2 The limits of PMFs

PMFs work well if the number of values is small. But as the number of
values increases, the probability associated with each value gets smaller and
the effect of random noise increases.

For example, we might be interested in the distribution of birth weights. In
the NSFG data, the variable totalwgt_oz records weight at birth in ounces.
Figure 3.1 shows the PMF of these values for first babies and others.

Overall, these distributions resemble the familiar “bell curve,” with many
values near the mean and a few values much higher and lower.

But parts of this figure are hard to interpret. There are many spikes and
valleys, and some apparent differences between the distributions. It is hard
to tell which of these features are significant. Also, it is hard to see overall
patterns; for example, which distribution do you think has the higher mean?

These problems can be mitigated by binning the data; that is, dividing the
domain into non-overlapping intervals and counting the number of values
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Figure 3.1: PMF of birth weights. This figure shows a limitation of PMFs:
they are hard to compare.

in each bin. Binning can be useful, but it is tricky to get the size of the bins
right. If they are big enough to smooth out noise, they might also smooth
out useful information.

An alternative that avoids these problems is the cumulative distribution
function, or CDF. But before we can get to that, we have to talk about per-
centiles.

3.3 Percentiles

If you have taken a standardized test, you probably got your results in the
form of a raw score and a percentile rank. In this context, the percentile
rank is the fraction of people who scored lower than you (or the same). So
if you are “in the 90th percentile,” you did as well as or better than 90% of
the people who took the exam.

Here’s how you could compute the percentile rank of a value, your_score,
relative to the scores in the sequence scores:

def PercentileRank(scores, your_score):

count = 0

for score in scores:

if score <= your_score:

count += 1
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percentile_rank = 100.0 * count / len(scores)

return percentile_rank

For example, if the scores in the sequence were 55, 66, 77, 88 and 99, and
you got the 88, then your percentile rank would be 100 * 4 / 5 which is
80.

If you are given a value, it is easy to find its percentile rank; going the other
way is slightly harder. If you are given a percentile rank and you want to
find the corresponding value, one option is to sort the values and search for
the one you want:

def Percentile(scores, percentile_rank):

scores.sort()

for score in scores:

if PercentileRank(scores, score) >= percentile_rank:

return score

The result of this calculation is a percentile. For example, the 50th percentile
is the value with percentile rank 50. In the distribution of exam scores, the
50th percentile is 77.

Exercise 3.3 This implementation of Percentile is not very efficient. A bet-
ter approach is to use the percentile rank to compute the index of the corre-
sponding percentile. Write a version of Percentile that uses this algorithm.

You can download a solution from http://thinkstats.com/score_

example.py.

Exercise 3.4 Optional: If you only want to compute one percentile, it is not
efficient to sort the scores. A better option is the selection algorithm, which
you can read about at http://wikipedia.org/wiki/Selection_algorithm.

Write (or find) an implementation of the selection algorithm and use it to
write an efficient version of Percentile.

3.4 Cumulative distribution functions

Now that we understand percentiles, we are ready to tackle the cumulative
distribution function (CDF). The CDF is the function that maps values to
their percentile rank in a distribution.
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The CDF is a function of x, where x is any value that might appear in the
distribution. To evaluate CDF(x) for a particular value of x, we compute the
fraction of the values in the sample less than (or equal to) x.

Here’s what that looks like as a function that takes a sample, t, and a value,
x:

def Cdf(t, x):

count = 0.0

for value in t:

if value <= x:

count += 1.0

prob = count / len(t)

return prob

This function should look familiar; it is almost identical to PercentileRank,
except that the result is in a probability in the range 0–1 rather than a per-
centile rank in the range 0–100.

As an example, suppose a sample has the values {1, 2, 2, 3, 5}. Here are some
values from its CDF:

CDF(0) = 0

CDF(1) = 0.2

CDF(2) = 0.6

CDF(3) = 0.8

CDF(4) = 0.8

CDF(5) = 1

We can evaluate the CDF for any value of x, not just values that appear in
the sample. If x is less than the smallest value in the sample, CDF(x) is 0. If
x is greater than the largest value, CDF(x) is 1.

Figure 3.2 is a graphical representation of this CDF. The CDF of a sample is
a step function. In the next chapter we will see distributions whose CDFs
are continuous functions.

3.5 Representing CDFs
I have written a module called Cdf that provides a class named Cdf that
represents CDFs. You can read the documentation of this module at
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Figure 3.2: Example of a CDF.

http://thinkstats.com/Cdf.html and you can download it from http:

//thinkstats.com/Cdf.py.

Cdfs are implemented with two sorted lists: xs, which contains the values,
and ps, which contains the probabilities. The most important methods Cdfs
provide are:

Prob(x): Given a value x, computes the probability p = CDF(x).

Value(p): Given a probability p, computes the corresponding value, x; that
is, the inverse CDF of p.

Because xs and ps are sorted, these operations can use the bisection algo-
rithm, which is efficient. The run time is proportional to the logarithm of
the number of values; see http://wikipedia.org/wiki/Time_complexity.

Cdfs also provide Render, which returns two lists, xs and ps, suitable for
plotting the CDF. Because the CDF is a step function, these lists have two
elements for each unique value in the distribution.

The Cdf module provides several functions for making Cdfs, including
MakeCdfFromList, which takes a sequence of values and returns their Cdf.

Finally, myplot.py provides functions named Cdf and Cdfs that plot Cdfs as
lines.

Exercise 3.5 Download Cdf.py and relay.py (see Exercise 3.2) and generate
a plot that shows the CDF of running speeds. Which gives you a better sense
of the shape of the distribution, the PMF or the CDF? You can download a
solution from http://thinkstats.com/relay_cdf.py.
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Figure 3.3: CDF of birth weights.

3.6 Back to the survey data

Figure 3.3 shows the CDFs of birth weight for first babies and others in the
NSFG dataset.

This figure makes the shape of the distributions, and the differences be-
tween them, much clearer. We can see that first babies are slightly lighter
throughout the distribution, with a larger discrepancy above the mean.

Exercise 3.6 How much did you weigh at birth? If you don’t know, call your
mother or someone else who knows. Using the pooled data (all live births),
compute the distribution of birth weights and use it to find your percentile
rank. If you were a first baby, find your percentile rank in the distribution
for first babies. Otherwise use the distribution for others. If you are in the
90th percentile or higher, call your mother back and apologize.

Exercise 3.7 Suppose you and your classmates compute the percentile rank
of your birth weights and then compute the CDF of the percentile ranks.
What do you expect it to look like? Hint: what fraction of the class do you
expect to be above the median?

3.7 Conditional distributions

A conditional distribution is the distribution of a subset of the data which
is selected according to a condition.
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For example, if you are above average in weight, but way above average in
height, then you might be relatively light for your height. Here’s how you
could make that claim more precise.

1. Select a cohort of people who are the same height as you (within some
range).

2. Find the CDF of weight for those people.

3. Find the percentile rank of your weight in that distribution.

Percentile ranks are useful for comparing measurements from different
tests, or tests applied to different groups.

For example, people who compete in foot races are usually grouped by age
and gender. To compare people in different groups, you can convert race
times to percentile ranks.

Exercise 3.8 I recently ran the James Joyce Ramble 10K in Dedham MA.
The results are available from http://coolrunning.com/results/10/ma/

Apr25_27thAn_set1.shtml. Go to that page and find my results. I came
in 97th in a field of 1633, so what is my percentile rank in the field?

In my division (M4049 means “male between 40 and 49 years of age”) I
came in 26th out of 256. What is my percentile rank in my division?

If I am still running in 10 years (and I hope I am), I will be in the M5059
division. Assuming that my percentile rank in my division is the same,
how much slower should I expect to be?

I maintain a friendly rivalry with a student who is in the F2039 division.
How fast does she have to run her next 10K to “beat” me in terms of per-
centile ranks?

3.8 Random numbers

CDFs are useful for generating random numbers with a given distribution.
Here’s how:

• Choose a random probability in the range 0–1.

• Use Cdf.Value to find the value in the distribution that corresponds
to the probability you chose.
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It might not be obvious why this works, but since it is easier to implement
than to explain, let’s try it out.

Exercise 3.9 Write a function called Sample, that takes a Cdf and an integer,
n, and returns a list of n values chosen at random from the Cdf. Hint: use
random.random. You will find a solution to this exercise in Cdf.py.

Using the distribution of birth weights from the NSFG, generate a random
sample with 1000 elements. Compute the CDF of the sample. Make a plot
that shows the original CDF and the CDF of the random sample. For large
values of n, the distributions should be the same.

This process, generating a random sample based on a measured sample, is
called resampling.

There are two ways to draw a sample from a population: with and without
replacement. If you imagine drawing marbles from an urn1, “replacement”
means putting the marbles back as you go (and stirring), so the population
is the same for every draw. “Without replacement,” means that each marble
can only be drawn once, so the remaining population is different after each
draw.

In Python, sampling with replacement can be implemented with
random.random to choose a percentile rank, or random.choice to choose an
element from a sequence. Sampling without replacement is provided by
random.sample.

Exercise 3.10 The numbers generated by random.random are supposed to be
uniform between 0 and 1; that is, every value in the range should have the
same probability.

Generate 1000 numbers from random.random and plot their PMF and CDF.
Can you tell whether they are uniform?

You can read about the uniform distribution at http://wikipedia.org/

wiki/Uniform_distribution_(discrete).

3.9 Summary statistics revisited
Once you have computed a CDF, it is easy to compute other summary statis-
tics. The median is just the 50th percentile2. The 25th and 75th percentiles

1The marbles-in-an-urn scenario is a standard model for random sampling processes
(see http://wikipedia.org/wiki/Urn_problem).

2You might see other definitions of the median. In particular, some sources suggest
that if you have an even number of elements in a sample, the median is the average of
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are often used to check whether a distribution is symmetric, and their dif-
ference, which is called the interquartile range, measures the spread.

Exercise 3.11 Write a function called Median that takes a Cdf and computes
the median, and one called Interquartile that computes the interquartile
range.

Compute the 25th, 50th, and 75th percentiles of the birth weight CDF. Do
these values suggest that the distribution is symmetric?

3.10 Glossary
percentile rank: The percentage of values in a distribution that are less than

or equal to a given value.

CDF: Cumulative distribution function, a function that maps from values
to their percentile ranks.

percentile: The value associated with a given percentile rank.

conditional distribution: A distribution computed under the assumption
that some condition holds.

resampling: The process of generating a random sample from a distribu-
tion that was computed from a sample.

replacement: During a sampling process, “replacement” indicates that the
population is the same for every sample. “Without replacement” in-
dicates that each element can be selected only once.

interquartile range: A measure of spread, the difference between the 75th
and 25th percentiles.

the middle two elements. This is an unnecessary special case, and it has the odd effect of
generating a value that is not in the sample. As far as I’m concerned, the median is the 50th
percentile. Period.
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Chapter 4

Continuous distributions

The distributions we have used so far are called empirical distributions
because they are based on empirical observations, which are necessarily
finite samples.

The alternative is a continuous distribution, which is characterized by a
CDF that is a continuous function (as opposed to a step function). Many
real world phenomena can be approximated by continuous distributions.

4.1 The exponential distribution

I’ll start with the exponential distribution because it is easy to work with. In
the real world, exponential distributions come up when we look at a series
of events and measure the times between events, which are called interar-
rival times. If the events are equally likely to occur at any time, the distri-
bution of interarrival times tends to look like an exponential distribution.

The CDF of the exponential distribution is:

CDF(x) = 1− e−λx

The parameter, λ, determines the shape of the distribution. Figure 4.1 shows
what this CDF looks like with λ = 2.

In general, the mean of an exponential distribution is 1/λ, so the mean of
this distribution is 0.5. The median is ln(2)/λ, which is roughly 0.35.
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Figure 4.1: CDF of exponential distribution.

To see an example of a distribution that is approximately exponential, we
will look at the interarrival time of babies. On December 18, 1997, 44 babies
were born in a hospital in Brisbane, Australia1. The times of birth for all 44
babies were reported in the local paper; you can download the data from
http://thinkstats.com/babyboom.dat.

Figure 4.2 shows the CDF of the interarrival times in minutes. It seems to
have the general shape of an exponential distribution, but how can we tell?

One way is to plot the complementary CDF, 1 − CDF(x), on a log-y scale.
For data from an exponential distribution, the result is a straight line. Let’s
see why that works.

If you plot the complementary CDF (CCDF) of a dataset that you think is
exponential, you expect to see a function like:

y ≈ e−λx

Taking the log of both sides yields:

log y ≈ -λx

So on a log-y scale the CCDF is a straight line with slope −λ.

Figure 4.3 shows the CCDF of the interarrivals on a log-y scale. It is not
exactly straight, which suggests that the exponential distribution is only

1This example is based on information and data from Dunn, “A Simple Dataset for
Demonstrating Common Distributions,” Journal of Statistics Education v.7, n.3 (1999).
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Figure 4.3: CCDF of interarrival times.
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an approximation. Most likely the underlying assumption—that a birth is
equally likely at any time of day—is not exactly true.

Exercise 4.1 For small values of n, we don’t expect an empirical distribution
to fit a continuous distribution exactly. One way to evaluate the quality of
fit is to generate a sample from a continuous distribution and see how well
it matches the data.

The function expovariate in the random module generates random values
from an exponential distribution with a given value of λ. Use it to generate
44 values from an exponential distribution with mean 32.6. Plot the CCDF
on a log-y scale and compare it to Figure 4.3.

Hint: You can use the function pyplot.yscale to plot the y axis on a log
scale.

Or, if you use myplot, the Cdf function takes a boolean option, complement,
that determines whether to plot the CDF or CCDF, and string options,
xscale and yscale, that transform the axes; to plot a CCDF on a log-y scale:

myplot.Cdf(cdf, complement=True, xscale='linear', yscale='log')

Exercise 4.2 Collect the birthdays of the students in your class, sort them,
and compute the interarrival times in days. Plot the CDF of the interar-
rival times and the CCDF on a log-y scale. Does it look like an exponential
distribution?

4.2 The Pareto distribution

The Pareto distribution is named after the economist Vilfredo Pareto, who
used it to describe the distribution of wealth (see http://wikipedia.org/

wiki/Pareto_distribution). Since then, it has been used to describe phe-
nomena in the natural and social sciences including sizes of cities and
towns, sand particles and meteorites, forest fires and earthquakes.

The CDF of the Pareto distribution is:

CDF(x) = 1−
(

x
xm

)−α

The parameters xm and α determine the location and shape of the distri-
bution. xm is the minimum possible value. Figure 4.4 shows the CDF of a
Pareto distribution with parameters xm = 0.5 and α = 1.
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Figure 4.4: CDF of a Pareto distribution.

The median of this distribution is xm21/α, which is 1, but the 95th percentile
is 10. By contrast, the exponential distribution with median 1 has 95th per-
centile of only 1.5.

There is a simple visual test that indicates whether an empirical distribution
fits a Pareto distribution: on a log-log scale, the CCDF looks like a straight
line. If you plot the CCDF of a sample from a Pareto distribution on a linear
scale, you expect to see a function like:

y ≈
(

x
xm

)−α

Taking the log of both sides yields:

log y ≈−α (log x − log xm)

So if you plot log y versus log x, it should look like a straight line with slope
−α and intercept α log xm.

Exercise 4.3 The random module provides paretovariate, which generates
random values from a Pareto distribution. It takes a parameter for α, but
not xm. The default value for xm is 1; you can generate a distribution with a
different parameter by multiplying by xm.

Write a wrapper function named paretovariate that takes α and xm as pa-
rameters and uses random.paretovariate to generate values from a two-
parameter Pareto distribution.

Use your function to generate a sample from a Pareto distribution. Com-
pute the CCDF and plot it on a log-log scale. Is it a straight line? What is
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the slope?

Exercise 4.4 To get a feel for the Pareto distribution, imagine what the world
would be like if the distribution of human height were Pareto. Choosing the
parameters xm = 100 cm and α = 1.7, we get a distribution with a reasonable
minimum, 100 cm, and median, 150 cm.

Generate 6 billion random values from this distribution. What is the mean
of this sample? What fraction of the population is shorter than the mean?
How tall is the tallest person in Pareto World?

Exercise 4.5 Zipf’s law is an observation about how often different words
are used. The most common words have very high frequencies, but there
are many unusual words, like “hapaxlegomenon,” that appear only a few
times. Zipf’s law predicts that in a body of text, called a “corpus,” the dis-
tribution of word frequencies is roughly Pareto.

Find a large corpus, in any language, in electronic format. Count how many
times each word appears. Find the CCDF of the word counts and plot it on a
log-log scale. Does Zipf’s law hold? What is the value of α, approximately?

Exercise 4.6 The Weibull distribution is a generalization of the exponential
distribution that comes up in failure analysis (see http://wikipedia.org/

wiki/Weibull_distribution). Its CDF is

CDF(x) = 1− e−(x/λ)k

Can you find a transformation that makes a Weibull distribution look like a
straight line? What do the slope and intercept of the line indicate?

Use random.weibullvariate to generate a sample from a Weibull distribu-
tion and use it to test your transformation.

4.3 The normal distribution

The normal distribution, also called Gaussian, is the most commonly used
because it describes so many phenomena, at least approximately. It turns
out that there is a good reason for its ubiquity, which we will get to in Sec-
tion 6.6.

The normal distribution has many properties that make it amenable for
analysis, but the CDF is not one of them. Unlike the other distributions
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Figure 4.5: CDF of a normal distribution.

we have looked at, there is no closed-form expression for the normal CDF;
the most common alternative is to write it in terms of the error function,
which is a special function written erf(x):

CDF(x) =
1
2

[
1 + erf

(
x− µ

σ
√

2

)]

erf(x) =
2√
π

∫ x

0
e−t2

dt

The parameters µ and σ determine the mean and standard deviation of the
distribution.

If these formulas make your eyes hurt, don’t worry; they are easy to imple-
ment in Python2. There are many fast and accurate ways to approximate
erf(x). You can download one of them from http://thinkstats.com/erf.

py, which provides functions named erf and NormalCdf.

Figure 4.5 shows the CDF of the normal distribution with parameters µ = 2.0
and σ = 0.5. The sigmoid shape of this curve is a recognizable characteristic
of a normal distribution.

In the previous chapter we looked at the distribution of birth weights in the
NSFG. Figure 4.6 shows the empirical CDF of weights for all live births and
the CDF of a normal distribution with the same mean and variance.

The normal distribution is a good model for this dataset. A model is a useful
simplification. In this case it is useful because we can summarize the entire

2As of Python 3.2, it is even easier; erf is in the math module.
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Figure 4.6: CDF of birth weights with a normal model.

distribution with just two numbers, µ = 116.5 and σ = 19.9, and the resulting
error (difference between the model and the data) is small.

Below the 10th percentile there is a discrepancy between the data and the
model; there are more light babies than we would expect in a normal distri-
bution. If we are interested in studying preterm babies, it would be impor-
tant to get this part of the distribution right, so it might not be appropriate
to use the normal model.

Exercise 4.7 The Wechsler Adult Intelligence Scale is a test that is intended
to measure intelligence3. Results are transformed so that the distribution of
scores in the general population is normal with µ = 100 and σ = 15.

Use erf.NormalCdf to investigate the frequency of rare events in a normal
distribution. What fraction of the population has an IQ greater than the
mean? What fraction is over 115? 130? 145?

A “six-sigma” event is a value that exceeds the mean by 6 standard devia-
tions, so a six-sigma IQ is 190. In a world of 6 billion people, how many do
we expect to have an IQ of 190 or more4?

Exercise 4.8 Plot the CDF of pregnancy lengths for all live births. Does it
look like a normal distribution?

3Whether it does or not is a fascinating controversy that I invite you to investigate at
your leisure.

4On this topic, you might be interested to read http://wikipedia.org/wiki/

Christopher_Langan.
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Compute the mean and standard deviation of the sample and plot the nor-
mal distribution with the same parameters. Is the normal distribution a
good model for this data? If you had to summarize this distribution with
two statistics, what statistics would you choose?

4.4 Normal probability plot

For the exponential, Pareto and Weibull distributions, there are simple
transformations we can use to test whether a continuous distribution is a
good model of a dataset.

For the normal distribution there is no such transformation, but there is an
alternative called a normal probability plot. It is based on rankits: if you
generate n values from a normal distribution and sort them, the kth rankit
is the mean of the distribution for the kth value.

Exercise 4.9 Write a function called Sample that generates 6 samples from a
normal distribution with µ = 0 and σ = 1. Sort and return the values.

Write a function called Samples that calls Sample 1000 times and returns a
list of 1000 lists.

If you apply zip to this list of lists, the result is 6 lists with 1000 values in
each. Compute the mean of each of these lists and print the results. I predict
that you will get something like this:

{−1.2672, −0.6418, −0.2016, 0.2016, 0.6418, 1.2672}

If you increase the number of times you call Sample, the results should con-
verge on these values.

Computing rankits exactly is moderately difficult, but there are numerical
methods for approximating them. And there is a quick-and-dirty method
that is even easier to implement:

1. From a normal distribution with µ = 0 and σ = 1, generate a sample
with the same size as your dataset and sort it.

2. Sort the values in the dataset.

3. Plot the sorted values from your dataset versus the random values.
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Figure 4.7: Normal probability plot of birth weights.

For large datasets, this method works well. For smaller datasets, you can
improve it by generating m(n+1) − 1 values from a normal distribution,
where n is the size of the dataset and m is a multiplier. Then select every
mth element, starting with the mth.

This method works with other distributions as well, as long as you know
how to generate a random sample.

Figure 4.7 is a quick-and-dirty normal probability plot for the birth weight
data.

The curvature in this plot suggests that there are deviations from a normal
distribution; nevertheless, it is a good (enough) model for many purposes.

Exercise 4.10 Write a function called NormalPlot that takes a sequence of
values and generates a normal probability plot. You can download a solu-
tion from http://thinkstats.com/rankit.py.

Use the running speeds from relay.py to generate a normal probability
plot. Is the normal distribution a good model for this data? You can down-
load a solution from http://thinkstats.com/relay_normal.py.

4.5 The lognormal distribution

If the logarithms of a set of values have a normal distribution, the values
have a lognormal distribution. The CDF of the lognormal distribution is
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Figure 4.8: CDF of adult weights (log transform).

the same as the CDF of the normal distribution, with log x substituted for
x.

CDFlognormal(x) = CDFnormal(log x)

The parameters of the lognormal distribution are usually denoted µ and σ.
But remember that these parameters are not the mean and standard devia-
tion; the mean of a lognormal distribution is exp(µ + σ2/2) and the standard
deviation is ugly5.

It turns out that the distribution of weights for adults is approximately log-
normal6.

The National Center for Chronic Disease Prevention and Health Promotion
conducts an annual survey as part of the Behavioral Risk Factor Surveil-
lance System (BRFSS)7. In 2008, they interviewed 414,509 respondents and
asked about their demographics, health and health risks.

Among the data they collected are the weights in kilograms of 398,484 re-
spondents. Figure 4.8 shows the distribution of log w, where w is weight in

5See http://wikipedia.org/wiki/Log-normal_distribution.
6I was tipped off to this possibility by a comment (without citation) at http://

mathworld.wolfram.com/LogNormalDistribution.html. Subsequently I found a paper
that proposes the log transform and suggests a cause: Penman and Johnson, “The Chang-
ing Shape of the Body Mass Index Distribution Curve in the Population,” Preventing
Chronic Disease, 2006 July; 3(3): A74. Online at http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC1636707.
7Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance

System Survey Data. Atlanta, Georgia: U.S. Department of Health and Human Services,
Centers for Disease Control and Prevention, 2008.
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kilograms, along with a normal model.

The normal model is a good fit for the data, although the highest weights
exceed what we expect from the normal model even after the log transform.
Since the distribution of log w fits a normal distribution, we conclude that
w fits a lognormal distribution.

Exercise 4.11 Download the BRFSS data from http://thinkstats.com/

CDBRFS08.ASC.gz, and my code for reading it from http://thinkstats.

com/brfss.py. Run brfss.py and confirm that it prints summary statistics
for a few of the variables.

Write a program that reads adult weights from the BRFSS and generates
normal probability plots for w and log w. You can download a solution
from http://thinkstats.com/brfss_figs.py.

Exercise 4.12 The distribution of populations for cities and towns has been
proposed as an example of a real-world phenomenon that can be described
with a Pareto distribution.

The U.S. Census Bureau publishes data on the population of every incorpo-
rated city and town in the United States. I have written a small program
that downloads this data and stores it in a file. You can download it from
http://thinkstats.com/populations.py.

1. Read over the program to make sure you know what it does; then run
it to download and process the data.

2. Write a program that computes and plots the distribution of popula-
tions for the 14,593 cities and towns in the dataset.

3. Plot the CDF on linear and log-x scales so you can get a sense of the
shape of the distribution. Then plot the CCDF on a log-log scale to see
if it has the characteristic shape of a Pareto distribution.

4. Try out the other transformations and plots in this chapter to see if
there is a better model for this data.

What conclusion do you draw about the distribution of sizes for cities
and towns? You can download a solution from http://thinkstats.com/

populations_cdf.py.

Exercise 4.13 The Internal Revenue Service of the United States (IRS) pro-
vides data about income taxes at http://irs.gov/taxstats.
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One of their files, containing information about individual incomes for 2008,
is available from http://thinkstats.com/08in11si.csv. I converted it to
a text format called CSV, which stands for “comma-separated values;” you
can read it using the csv module.

Extract the distribution of incomes from this dataset. Are any of the con-
tinuous distributions in this chapter a good model of the data? You can
download a solution from http://thinkstats.com/irs.py.

4.6 Why model?

At the beginning of this chapter I said that many real world phenomena can
be modeled with continuous distributions. “So,” you might ask, “what?”

Like all models, continuous distributions are abstractions, which means
they leave out details that are considered irrelevant. For example, an ob-
served distribution might have measurement errors or quirks that are spe-
cific to the sample; continuous models smooth out these idiosyncrasies.

Continuous models are also a form of data compression. When a model fits
a dataset well, a small set of parameters can summarize a large amount of
data.

It is sometimes surprising when data from a natural phenomenon fit a con-
tinuous distribution, but these observations can lead to insight into physical
systems. Sometimes we can explain why an observed distribution has a par-
ticular form. For example, Pareto distributions are often the result of gen-
erative processes with positive feedback (so-called preferential attachment
processes: see http://wikipedia.org/wiki/Preferential_attachment.).

Continuous distributions lend themselves to mathematical analysis, as we
will see in Chapter 6.

4.7 Generating random numbers

Continuous CDFs are also useful for generating random numbers. If there
is an efficient way to compute the inverse CDF, ICDF(p), we can generate
random values with the appropriate distribution by choosing from a uni-
form distribution from 0 to 1, then choosing
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x = ICDF(p)

For example, the CDF of the exponential distribution is

p = 1− e−λx

Solving for x yields:

x= −log (1 − p) / λ

So in Python we can write

def expovariate(lam):

p = random.random()

x = -math.log(1-p) / lam

return x

I called the parameter lam because lambda is a Python keyword. Most im-
plementations of random.random can return 0 but not 1, so 1 − p can be 1
but not 0, which is good, because log 0 is undefined.

Exercise 4.14 Write a function named weibullvariate that takes lam and k

and returns a random value from the Weibull distribution with those pa-
rameters.

4.8 Glossary
empirical distribution: The distribution of values in a sample.

continuous distribution: A distribution described by a continuous func-
tion.

interarrival time: The elapsed time between two events.

error function: A special mathematical function, so-named because it
comes up in the study of measurement errors.

normal probability plot: A plot of the sorted values in a sample versus the
expected value for each if their distribution is normal.

rankit: The expected value of an element in a sorted list of values from a
normal distribution.

model: A useful simplification. Continuous distributions are often good
models of more complex empirical distributions.
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corpus: A body of text used as a sample of a language.

hapaxlegomenon: A word that appears only once in a corpus. It appears
twice in this book, so far.
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Chapter 5

Probability

In Chapter 2, I said that a probability is a frequency expressed as a fraction
of the sample size. That’s one definition of probability, but it’s not the only
one. In fact, the meaning of probability is a topic of some controversy.

We’ll start with the uncontroversial parts and work our way up. There is
general agreement that a probability is a real value between 0 and 1 that
is intended to be a quantitative measure corresponding to the qualitative
notion that some things are more likely than others.

The “things” we assign probabilities to are called events. If E represents
an event, then P(E) represents the probability that E will occur. A situation
where E might or might not happen is called a trial.

As an example, suppose you have a standard six-sided die1 and want to
know the probability of rolling a 6. Each roll is a trial. Each time a 6 appears
is considered a success; other trials are considered failures. These terms are
used even in scenarios where “success” is bad and “failure” is good.

If we have a finite sample of n trials and we observe s successes, the prob-
ability of success is s/n. If the set of trials is infinite, defining probabilities
is a little trickier, but most people are willing to accept probabilistic claims
about a hypothetical series of identical trials, like tossing a coin or rolling a
die.

We start to run into trouble when we talk about probabilities of unique
events. For example, we might like to know the probability that a candi-
date will win an election. But every election is unique, so there is no series
of identical trials to consider.

1“Die” is the singular of “dice”.
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In cases like this some people would say that the notion of probability does
not apply. This position is sometimes called frequentism because it defines
probability in terms of frequencies. If there is no set of identical trials, there
is no probability.

Frequentism is philosophically safe, but frustrating because it limits the
scope of probability to physical systems that are either random (like atomic
decay) or so unpredictable that we model them as random (like a tumbling
die). Anything involving people is pretty much off the table.

An alternative is Bayesianism, which defines probability as a degree of be-
lief that an event will occur. By this definition, the notion of probability
can be applied in almost any circumstance. One difficulty with Bayesian
probability is that it depends on a person’s state of knowledge; people with
different information might have different degrees of belief about the same
event. For this reason, many people think that Bayesian probabilities are
more subjective than frequency probabilities.

As an example, what is the probability that Thaksin Shinawatra is the Prime
Minister of Thailand? A frequentist would say that there is no probability
for this event because there is no set of trials. Thaksin either is, or is not, the
PM; it’s not a question of probability.

In contrast, a Bayesian would be willing to assign a probability to this
event based on his or her state of knowledge. For example, if you re-
member that there was a coup in Thailand in 2006, and you are pretty sure
Thaksin was the PM who was ousted, you might assign a probability like
0.1, which acknowledges the possibility that your recollection is incorrect,
or that Thaksin has been reinstated.

If you consult Wikipedia, you will learn that Thaksin is not the PM of Thai-
land (at the time I am writing). Based on this information, you might revise
your probability estimate to 0.01, reflecting the possibility that Wikipedia is
wrong.

5.1 Rules of probability
For frequency probabilities, we can derive rules that relate probabilities of
different events. Probably the best known of these rules is

P(A and B) = P(A) P(B) Warning: not always true!

where P(A and B) is the probability that events A and B both occur. This
formula is easy to remember; the only problem is that it is not always true.
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This formula only applies if A and B are independent, which means that if
I know A occurred, that doesn’t change the probability of B, and vice versa.

For example, if A is tossing a coin and getting heads, and B is rolling a die
and getting 1, A and B are independent, because the coin toss doesn’t tell
me anything about the die roll.

But if I roll two dice, and A is getting at least one six, and B is getting two
sixes, A and B are not independent, because if I know that A occurred, the
probability of B is higher, and if I know B occurred, the probability of A is
1.

When A and B are not independent, it is often useful to compute the condi-
tional probability, P(A|B), which is the probability of A given that we know
B occurred:

P(A|B) = P(A and B)
P(B)

From that we can derive the general relation

P(A and B) = P(A) P(B|A)

This might not be as easy to remember, but if you translate it into English
it should make sense: “The chance of both things happening is the chance
that the first one happens, and then the second one given the first.”

There is nothing special about the order of events, so we could also write

P(A and B) = P(B) P(A|B)

These relationships hold whether A and B are independent or not. If they
are independent, then P(A|B) = P(A), which gets us back where we started.

Because all probabilities are in the range 0 to 1, it is easy to show that

P(A and B) ≤ P(A)

To picture this, imagine a club that only admits people who satisfy some
requirement, A. Now suppose they add a new requirement for member-
ship, B. It seems obvious that the club will get smaller, or stay the same
if it happens that all the members satisfy B. But there are some scenar-
ios where people are surprisingly bad at this kind of analysis. For exam-
ples and discussion of this phenomenon, see http://wikipedia.org/wiki/

Conjunction_fallacy.

Exercise 5.1 If I roll two dice and the total is 8, what is the chance that one
of the dice is a 6?
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Exercise 5.2 If I roll 100 dice, what is the chance of getting all sixes? What is
the chance of getting no sixes?

Exercise 5.3 The following questions are adapted from Mlodinow, The
Drunkard’s Walk.

1. If a family has two children, what is the chance that they have two
girls?

2. If a family has two children and we know that at least one of them is
a girl, what is the chance that they have two girls?

3. If a family has two children and we know that the older one is a girl,
what is the chance that they have two girls?

4. If a family has two children and we know that at least one of them is
a girl named Florida, what is the chance that they have two girls?

You can assume that the probability that any child is a girl is 1/2, and that
the children in a family are independent trials (in more ways than one). You
can also assume that the percentage of girls named Florida is small.

5.2 Monty Hall

The Monty Hall problem might be the most contentious question in the
history of probability. The scenario is simple, but the correct answer is so
counter-intuitive that many people just can’t accept it, and many smart peo-
ple have embarrassed themselves not just by getting it wrong but by argu-
ing the wrong side, aggressively, in public.

Monty Hall was the original host of the game show Let’s Make a Deal. The
Monty Hall problem is based on one of the regular games on the show. If
you are on the show, here’s what happens:

• Monty shows you three closed doors and tells you that there is a prize
behind each door: one prize is a car, the other two are less valuable
prizes like peanut butter and fake finger nails. The prizes are arranged
at random.

• The object of the game is to guess which door has the car. If you guess
right, you get to keep the car.
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• So you pick a door, which we will call Door A. We’ll call the other
doors B and C.

• Before opening the door you chose, Monty likes to increase the sus-
pense by opening either Door B or C, whichever does not have the
car. (If the car is actually behind Door A, Monty can safely open B or
C, so he chooses one at random).

• Then Monty offers you the option to stick with your original choice or
switch to the one remaining unopened door.

The question is, should you “stick” or “switch” or does it make no differ-
ence?

Most people have the strong intuition that it makes no difference. There are
two doors left, they reason, so the chance that the car is behind Door A is
50%.

But that is wrong. In fact, the chance of winning if you stick with Door A is
only 1/3; if you switch, your chances are 2/3. I will explain why, but I don’t
expect you to believe me.

The key is to realize that there are three possible scenarios: the car is behind
Door A, B or C. Since the prizes are arranged at random, the probability of
each scenario is 1/3.

If your strategy is to stick with Door A, then you will win only in Scenario
A, which has probability 1/3.

If your strategy is to switch, you will win in either Scenario B or Scenario C,
so the total probability of winning is 2/3.

If you are not completely convinced by this argument, you are in good com-
pany. When a friend presented this solution to Paul Erdős, he replied, “No,
that is impossible. It should make no difference.2”

No amount of argument could convince him. In the end, it took a computer
simulation to bring him around.

Exercise 5.4 Write a program that simulates the Monty Hall problem and
use it to estimate the probability of winning if you stick and if you switch.

Then read the discussion of the problem at http://wikipedia.org/wiki/
Monty_Hall_problem.

2See Hoffman, The Man Who Loved Only Numbers, page 83.
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Which do you find more convincing, the simulation or the arguments, and
why?

Exercise 5.5 To understand the Monty Hall problem, it is important to real-
ize that by deciding which door to open, Monty is giving you information.
To see why this matters, imagine the case where Monty doesn’t know where
the prizes are, so he chooses Door B or C at random.

If he opens the door with the car, the game is over, you lose, and you don’t
get to choose whether to switch or stick.

Otherwise, are you better off switching or sticking?

5.3 Poincaré

Henri Poincaré was a French mathematician who taught at the Sorbonne
around 1900. The following anecdote about him is probably fabricated, but
it makes an interesting probability problem.

Supposedly Poincaré suspected that his local bakery was selling loaves of
bread that were lighter than the advertised weight of 1 kg, so every day for
a year he bought a loaf of bread, brought it home and weighed it. At the end
of the year, he plotted the distribution of his measurements and showed that
it fit a normal distribution with mean 950 g and standard deviation 50 g. He
brought this evidence to the bread police, who gave the baker a warning.

For the next year, Poincaré continued the practice of weighing his bread
every day. At the end of the year, he found that the average weight was
1000 g, just as it should be, but again he complained to the bread police,
and this time they fined the baker.

Why? Because the shape of the distribution was asymmetric. Unlike the
normal distribution, it was skewed to the right, which is consistent with
the hypothesis that the baker was still making 950 g loaves, but deliberately
giving Poincaré the heavier ones.

Exercise 5.6 Write a program that simulates a baker who chooses n loaves
from a distribution with mean 950 g and standard deviation 50 g, and gives
the heaviest one to Poincaré. What value of n yields a distribution with
mean 1000 g? What is the standard deviation?

Compare this distribution to a normal distribution with the same mean and
the same standard deviation. Is the difference in the shape of the distribu-
tion big enough to convince the bread police?
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Exercise 5.7 If you go to a dance where partners are paired up randomly,
what percentage of opposite sex couples will you see where the woman is
taller than the man?

In the BRFSS (see Section 4.5), the distribution of heights is roughly normal
with parameters µ = 178 cm and σ2 = 59.4 cm for men, and µ = 163 cm and
σ2 = 52.8 cm for women.

As an aside, you might notice that the standard deviation for men is higher
and wonder whether men’s heights are more variable. To compare vari-
ability between groups, it is useful to compute the coefficient of variation,
which is the standard deviation as a fraction of the mean, σ/µ. By this mea-
sure, women’s heights are slightly more variable.

5.4 Another rule of probability

If two events are mutually exclusive, that means that only one of them can
happen, so the conditional probabilities are 0:

P(A|B) = P(B|A) = 0

In this case it is easy to compute the probability of either event:

P(A or B) = P(A) + P(B) Warning: not always true.

But remember that this only applies if the events are mutually exclusive. In
general the probability of A or B or both is:

P(A or B) = P(A) + P(B) − P(A and B)

The reason we have to subtract off P(A and B) is that otherwise it gets
counted twice. For example, if I flip two coins, the chance of getting at
least one tails is 1/2 + 1/2− 1/4. I have to subtract 1/4 because otherwise I
am counting heads-heads twice. The problem becomes even clearer if I toss
three coins.

Exercise 5.8 If I roll two dice, what is the chance of rolling at least one 6?

Exercise 5.9 What is the general formula for the probability of A or B but
not both?
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5.5 Binomial distribution

If I roll 100 dice, the chance of getting all sixes is (1/6)100. And the chance
of getting no sixes is (5/6)100.

Those cases are easy, but more generally, we might like to know the chance
of getting k sixes, for all values of k from 0 to 100. The answer is the bino-
mial distribution, which has this PMF:

PMF(k) =
(

n
k

)
pk(1− p)n−k

where n is the number of trials, p is the probability of success, and k is the
number of successes.

The binomial coefficient is pronounced “n choose k”, and it can be com-
puted directly like this: (

n
k

)
=

n!
k!(n− k)!

Or recursively like this (
n
k

)
=

(
n− 1

k

)
+

(
n− 1
k− 1

)
with two base cases: if n = 0 the result is 0; if k = 0 the result is 1. If you
download http://thinkstats.com/thinkstats.py you will see a function
named Binom that computes the binomial coefficient with reasonable effi-
ciency.

Exercise 5.10 If you flip a coin 100 times, you expect about 50 heads, but
what is the probability of getting exactly 50 heads?

5.6 Streaks and hot spots

People do not have very good intuition for random processes. If you ask
people to generate “random” numbers, they tend to generate sequences
that are random-looking, but actually more ordered than real random se-
quences. Conversely, if you show them a real random sequence, they tend
to see patterns where there are none.

An example of the second phenomenon is that many people believe in
“streaks” in sports: a player that has been successful recently is said to have
a “hot hand;” a player that has been unsuccessful is “in a slump.”
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Statisticians have tested these hypotheses in a number of sports, and the
consistent result is that there is no such thing as a streak3. If you assume that
each attempt is independent of previous attempts, you will see occasional
long strings of successes or failures. These apparent streaks are not suffi-
cient evidence that there is any relationship between successive attempts.

A related phenomenon is the clustering illusion, which is the tendency
to see clusters in spatial patterns that are actually random (see http://

wikipedia.org/wiki/Clustering_illusion).

To test whether an apparent cluster is likely to be meaningful, we can simu-
late the behavior of a random system to see whether it is likely to produce a
similar cluster. This process is called Monte Carlo simulation because gen-
erating random numbers is reminiscent of casino games (and Monte Carlo
is famous for its casino).

Exercise 5.11 If there are 10 players in a basketball game and each one takes
15 shots during the course of the game, and each shot has a 50% probability
of going in, what is the probability that you will see, in a given game, at
least one player who hits 10 shots in a row? If you watch a season of 82
games, what are the chances you will see at least one streak of 10 hits or
misses?

This problem demonstrates some strengths and weaknesses of Monte Carlo
simulation. A strength is that it is often easy and fast to write a simulation,
and no great knowledge of probability is required. A weakness is that es-
timating the probability of rare events can take a long time! A little bit of
analysis can save a lot of computing.

Exercise 5.12 In 1941 Joe DiMaggio got at least one hit in 56 consecutive
games4. Many baseball fans consider this streak the greatest achievement
in any sport in history, because it was so unlikely.

Use a Monte Carlo simulation to estimate the probability that any player in
major league baseball will have a hitting streak of 57 or more games in the
next century.

Exercise 5.13 A cancer cluster is defined by the Centers for Disease Control
(CDC) as “greater-than-expected number of cancer cases that occurs within
a group of people in a geographic area over a period of time.5”

3For example, see Gilovich, Vallone and Tversky, “The hot hand in basketball: On the
misperception of random sequences,” 1985.

4See http://wikipedia.org/wiki/Hitting_streak.
5From http://cdc.gov/nceh/clusters/about.htm.
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Many people interpret a cancer cluster as evidence of an environmental
hazard, but many scientists and statisticians think that investigating can-
cer clusters is a waste of time6. Why? One reason (among several) is that
identifying cancer clusters is a classic case of the Sharpshooter Fallacy (see
http://wikipedia.org/wiki/Texas_sharpshooter_fallacy).

Nevertheless, when someone reports a cancer cluster, the CDC is obligated
to investigate. According to their web page:

“Investigators develop a ‘case’ definition, a time period of con-
cern, and the population at risk. They then calculate the ex-
pected number of cases and compare them to the observed num-
ber. A cluster is confirmed when the observed/expected ratio is
greater than 1.0, and the difference is statistically significant.”

1. Suppose that a particular cancer has an incidence of 1 case per thou-
sand people per year. If you follow a particular cohort of 100 peo-
ple for 10 years, you would expect to see about 1 case. If you saw
two cases, that would not be very surprising, but more than than two
would be rare.

Write a program that simulates a large number of cohorts over a 10
year period and estimates the distribution of total cases.

2. An observation is considered statistically significant if its probability
by chance alone, called a p-value, is less than 5%. In a cohort of 100
people over 10 years, how many cases would you have to see to meet
this criterion?

3. Now imagine that you divide a population of 10000 people into 100
cohorts and follow them for 10 years. What is the chance that at least
one of the cohorts will have a “statistically significant” cluster? What
if we require a p-value of 1%?

4. Now imagine that you arrange 10000 people in a 100 ×100 grid and
follow them for 10 years. What is the chance that there will be at least
one 10 ×10 block anywhere in the grid with a statistically significant
cluster?

5. Finally, imagine that you follow a grid of 10000 people for 30 years.
What is the chance that there will be a 10-year interval at some point
with a 10×10 block anywhere in the grid with a statistically significant
cluster?

6See Gawande, “The Cancer Cluster Myth,” New Yorker, Feb 8, 1997.
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5.7 Bayes’s theorem

Bayes’s theorem is a relationship between the conditional probabilities of
two events. A conditional probability, often written P(A|B) is the proba-
bility that Event Awill occur given that we know that Event Bhas occurred.
Bayes’s theorem states:

P(A|B) = P(B|A)P(A)

P(B)

To see that this is true, it helps to write P(A and B), which is the probability
that A and B occur

P(A and B) = P(A) P(B|A)

But it is also true that

P(A and B) = P(B) P(A|B)

So

P(B) P(A|B) = P(A) P(B|A)

Dividing through by P(B) yields Bayes’s theorem7.

Bayes’s theorem is often interpreted as a statement about how a body of
evidence, E, affects the probability of a hypothesis, H:

P(H|E) = P(H)
P(E|H)

P(E)

In words, this equation says that the probability of H after you have seen
E is the product of P(H), which is the probability of H before you saw the
evidence, and the ratio of P(E|H), the probability of seeing the evidence
assuming that H is true, and P(E), the probability of seeing the evidence
under any circumstances (H true or not).

This way of reading Bayes’s theorem is called the “diachronic” interpreta-
tion because it describes how the probability of a hypothesis gets updated
over time, usually in light of new evidence. In this context, P(H) is called
the prior probability and P(H|E) is called the posterior. P(E|H) is the like-
lihood of the evidence, and P(E) is the normalizing constant.

7See http://wikipedia.org/wiki/Q.E.D.!
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A classic use of Bayes’s theorem is the interpretation of clinical tests. For ex-
ample, routine testing for illegal drug use is increasingly common in work-
places and schools (See http://aclu.org/drugpolicy/testing.). The com-
panies that perform these tests maintain that the tests are sensitive, which
means that they are likely to produce a positive result if there are drugs (or
metabolites) in a sample, and specific, which means that they are likely to
yield a negative result if there are no drugs.

Studies from the Journal of the American Medical Association8 estimate
that the sensitivity of common drug tests is about 60% and the specificity
is about 99%.

Now suppose these tests are applied to a workforce where the actual rate
of drug use is 5%. Of the employees who test positive, how many of them
actually use drugs?

In Bayesian terms, we want to compute the probability of drug use given a
positive test, P(D|E). By Bayes’s theorem:

P(D|E) = P(D)
P(E|D)

P(E)

The prior, P(D) is the probability of drug use before we see the outcome of
the test, which is 5%. The likelihood, P(E|D), is the probability of a positive
test assuming drug use, which is the sensitivity.

The normalizing constant, P(E) is a little harder to evaluate. We have to
consider two possibilities, P(E|D) and P(E|N), where N is the hypothesis
that the subject of the test does not use drugs:

P(E) = P(D) P(E|D) + P(N) P(E|N)

The probability of a false positive, P(E|N), is the complement of the speci-
ficity, or 1%.

Putting it together, we have

P(D|E) = P(D)P(E|D)

P(D)P(E|D) + P(N)P(E|N)

Plugging in the given values yields P(D|E) = 0.76, which means that of the
people who test positive, about 1 in 4 is innocent.

8I got these numbers from Gleason and Barnum, “Predictive Probabilities In Employee
Drug-Testing,” at http://piercelaw.edu/risk/vol2/winter/gleason.htm.
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Exercise 5.14 Write a program that takes the actual rate of drug use, and the
sensitivity and specificity of the test, and uses Bayes’s theorem to compute
P(D|E).

Suppose the same test is applied to a population where the actual rate of
drug use is 1%. What is the probability that someone who tests positive is
actually a drug user?

Exercise 5.15 This exercise is from http://wikipedia.org/wiki/Bayesian_

inference.

“Suppose there are two full bowls of cookies. Bowl 1 has 10
chocolate chip and 30 plain cookies, while Bowl 2 has 20 of each.
Our friend Fred picks a bowl at random, and then picks a cookie
at random. The cookie turns out to be a plain one. How probable
is it that Fred picked it out of Bowl 1?”

Exercise 5.16 The blue M&M was introduced in 1995. Before then, the color
mix in a bag of plain M&Ms was (30% Brown, 20% Yellow, 20% Red, 10%
Green, 10% Orange, 10% Tan). Afterward it was (24% Blue , 20% Green,
16% Orange, 14% Yellow, 13% Red, 13% Brown).

A friend of mine has two bags of M&Ms, and he tells me that one is from
1994 and one from 1996. He won’t tell me which is which, but he gives
me one M&M from each bag. One is yellow and one is green. What is the
probability that the yellow M&M came from the 1994 bag?

Exercise 5.17 This exercise is adapted from MacKay, Information Theory, In-
ference, and Learning Algorithms:

Elvis Presley had a twin brother who died at birth. According to the
Wikipedia article on twins:

“Twins are estimated to be approximately 1.9% of the world pop-
ulation, with monozygotic twins making up 0.2% of the total—
and 8% of all twins.”

What is the probability that Elvis was an identical twin?

5.8 Glossary
event: Something that may or may not occur, with some probability.
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trial: One in a series of occasions when an event might occur.

success: A trial in which an event occurs.

failure: A trail in which no event occurs.

frequentism: A strict interpretation of probability that only applies to a se-
ries of identical trials.

Bayesianism: A more general interpretation that uses probability to repre-
sent a subjective degree of belief.

independent: Two events are independent if the occurrence of one does has
no effect on the probability of another.

coefficient of variation: A statistic that measures spread, normalized by
central tendency, for comparison between distributions with different
means.

Monte Carlo simulation: A method of computing probabilities by sim-
ulating random processes (see http://wikipedia.org/wiki/Monte_

Carlo_method).

update: The process of using data to revise a probability.

prior: A probability before a Bayesian update.

posterior: A probability computed by a Bayesian update.

likelihood of the evidence: One of the terms in Bayes’s theorem, the prob-
ability of the evidence conditioned on a hypothesis.

normalizing constant: The denominator of Bayes’s Theorem, used to nor-
malize the result to be a probability.



Chapter 6

Operations on distributions

6.1 Skewness

Skewness is a statistic that measures the asymmetry of a distribution.
Given a sequence of values, xi, the sample skewness is:

g1 = m3/m3/2
2

m2 =
1
n ∑

i
(xi − µ)2

m3 =
1
n ∑

i
(xi − µ)3

You might recognize m2 as the mean squared deviation (also known as vari-
ance); m3 is the mean cubed deviation.

Negative skewness indicates that a distribution “skews left;” that is, it ex-
tends farther to the left than the right. Positive skewness indicates that a
distribution skews right.

In practice, computing the skewness of a sample is usually not a good idea.
If there are any outliers, they have a disproportionate effect on g1.

Another way to evaluate the asymmetry of a distribution is to look at the
relationship between the mean and median. Extreme values have more ef-
fect on the mean than the median, so in a distribution that skews left, the
mean is less than the median.

Pearson’s median skewness coefficient is an alternative measure of skew-
ness that explicitly captures the relationship between the mean, µ, and the
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median, µ1/2:
gp = 3(µ− µ1/2)/σ

This statistic is robust, which means that it is less vulnerable to the effect of
outliers.

Exercise 6.1 Write a function named Skewness that computes g1 for a sam-
ple.

Compute the skewness for the distributions of pregnancy length and birth
weight. Are the results consistent with the shape of the distributions?

Write a function named PearsonSkewness that computes gp for these distri-
butions. How does gp compare to g1?

Exercise 6.2 The “Lake Wobegon effect” is an amusing nickname1 for il-
lusory superiority, which is the tendency for people to overestimate their
abilities relative to others. For example, in some surveys, more than 80%
of respondents believe that they are better than the average driver (see
http://wikipedia.org/wiki/Illusory_superiority).

If we interpret “average” to mean median, then this result is logically im-
possible, but if “average” is the mean, this result is possible, although un-
likely.

What percentage of the population has more than the average number of
legs?

Exercise 6.3 The Internal Revenue Service of the United States (IRS) pro-
vides data about income taxes, and other statistics, at http://irs.gov/

taxstats. If you did Exercise 4.13, you have already worked with this
data; otherwise, follow the instructions there to extract the distribution of
incomes from this dataset.

What fraction of the population reports a taxable income below the mean?

Compute the median, mean, skewness and Pearson’s skewness of the in-
come data. Because the data has been binned, you will have to make some
approximations.

The Gini coefficient is a measure of income inequality. Read about it
at http://wikipedia.org/wiki/Gini_coefficient and write a function
called Gini that computes it for the income distribution.

1If you don’t get it, see http://wikipedia.org/wiki/Lake_Wobegon.
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Hint: use the PMF to compute the relative mean difference (see http://

wikipedia.org/wiki/Mean_difference).

You can download a solution to this exercise from http://thinkstats.com/

gini.py.

6.2 Random Variables

A random variable represents a process that generates a random number.
Random variables are usually written with a capital letter, like X. When
you see a random variable, you should think “a value selected from a dis-
tribution.”

For example, the formal definition of the cumulative distribution function
is:

CDFX(x) = P(X ≤ x)

I have avoided this notation until now because it is so awful, but here’s what
it means: The CDF of the random variable X, evaluated for a particular
value x, is defined as the probability that a value generated by the random
process X is less than or equal to x.

As a computer scientist, I find it helpful to think of a random variable as
an object that provides a method, which I will call generate, that uses a
random process to generate values.

For example, here is a definition for a class that represents random vari-
ables:

class RandomVariable(object):

"""Parent class for all random variables."""

And here is a random variable with an exponential distribution:

class Exponential(RandomVariable):

def __init__(self, lam):

self.lam = lam

def generate(self):

return random.expovariate(self.lam)

The init method takes the parameter, λ, and stores it as an attribute. The
generate method returns a random value from the exponential distribution
with that parameter.
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Each time you invoke generate, you get a different value. The value you
get is called a random variate, which is why many function names in the
random module include the word “variate.”

If I were just generating exponential variates, I would not bother to define
a new class; I would use random.expovariate. But for other distributions
it might be useful to use RandomVariable objects. For example, the Erlang
distribution is a continuous distribution with parameters λ and k (see http:
//wikipedia.org/wiki/Erlang_distribution).

One way to generate values from an Erlang distribution is to add k values
from an exponential distribution with the same λ. Here’s an implementa-
tion:

class Erlang(RandomVariable):

def __init__(self, lam, k):

self.lam = lam

self.k = k

self.expo = Exponential(lam)

def generate(self):

total = 0

for i in range(self.k):

total += self.expo.generate()

return total

The init method creates an Exponential object with the given parameter;
then generate uses it. In general, the init method can take any set of pa-
rameters and the generate function can implement any random process.

Exercise 6.4 Write a definition for a class that represents a random vari-
able with a Gumbel distribution (see http://wikipedia.org/wiki/Gumbel_
distribution).

6.3 PDFs

The derivative of a CDF is called a probability density function, or PDF.
For example, the PDF of an exponential distribution is

PDFexpo(x) = λe−λx
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The PDF of a normal distribution is

PDFnormal(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ

σ

)2
]

Evaluating a PDF for a particular value of x is usually not useful. The result
is not a probability; it is a probability density.

In physics, density is mass per unit of volume; in order to get a mass, you
have to multiply by volume or, if the density is not constant, you have to
integrate over volume.

Similarly, probability density measures probability per unit of x. In order to
get a probability mass2, you have to integrate over x. For example, if x is a
random variable whose PDF is PDFX, we can compute the probability that
a value from X falls between −0.5 and 0.5:

P(−0.5 ≤ X < 0.5) =
∫ 0.5

−0.5
PDFX(x)dx

Or, since the CDF is the integral of the PDF, we can write

P(−0.5 ≤ X < 0.5) = CDFX(0.5)−CDFX(−0.5)

For some distributions we can evaluate the CDF explicitly, so we would
use the second option. Otherwise we usually have to integrate the PDF
numerically.

Exercise 6.5 What is the probability that a value chosen from an exponential
distribution with parameter λ falls between 1 and 20? Express your answer
as a function of λ. Keep this result handy; we will use it in Section 8.8.

Exercise 6.6 In the BRFSS (see Section 4.5), the distribution of heights is
roughly normal with parameters µ = 178 cm and σ2 = 59.4 cm for men,
and µ = 163 cm and σ2 = 52.8 cm for women.

In order to join Blue Man Group, you have to be male between 5’10” and
6’1” (see http://bluemancasting.com). What percentage of the U.S. male
population is in this range? Hint: see Section 4.3.

2To take the analogy one step farther, the mean of a distribution is its center of mass,
and the variance is its moment of inertia.
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6.4 Convolution

Suppose we have two random variables, X and Y, with distributions CDFX
and CDFY. What is the distribution of the sum Z = X + Y?

One option is to write a RandomVariable object that generates the sum:

class Sum(RandomVariable):

def __init__(X, Y):

self.X = X

self.Y = Y

def generate():

return X.generate() + Y.generate()

Given any RandomVariables, X and Y, we can create a Sum object that rep-
resents Z. Then we can use a sample from Z to approximate CDFZ.

This approach is simple and versatile, but not very efficient; we have to
generate a large sample to estimate CDFZ accurately, and even then it is not
exact.

If CDFX and CDFY are expressed as functions, sometimes we can find CDFZ
exactly. Here’s how:

1. To start, assume that the particular value of X is x. Then CDFZ(z) is

P(Z ≤ z | X = x) = P(Y ≤ z− x)

Let’s read that back. The left side is “the probability that the sum is
less than z, given that the first term is x.” Well, if the first term is x and
the sum has to be less than z, then the second term has to be less than
z − x.

2. To get the probability that Y is less than z − x, we evaluate CDFY.

P(Y ≤ z− x) = CDFY(z− x)

This follows from the definition of the CDF.

3. Good so far? Let’s go on. Since we don’t actually know the value of x,
we have to consider all values it could have and integrate over them:

P(Z ≤ z) =
∫ ∞

−∞
P(Z ≤ z | X = x) PDFX(x) dx
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The integrand is “the probability that Z is less than or equal to z, given
that X = x, times the probability that X = x.”

Substituting from the previous steps we get

P(Z ≤ z) =
∫ ∞

−∞
CDFY(z− x) PDFX(x) dx

The left side is the definition of CDFZ, so we conclude:

CDFZ(z) =
∫ ∞

−∞
CDFY(z− x) PDFX(x) dx

4. To get PDFZ, take the derivative of both sides with respect to z. The
result is

PDFZ(z) =
∫ ∞

−∞
PDFY(z− x) PDFX(x) dx

If you have studied signals and systems, you might recognize that
integral. It is the convolution of PDFY and PDFX, denoted with the
operator ?.

PDFZ = PDFY ? PDFX

So the distribution of the sum is the convolution of the distributions.
See http://wiktionary.org/wiki/booyah!

As an example, suppose X and Y are random variables with an exponential
distribution with parameter λ. The distribution of Z = X + Y is:

PDFZ(z) =
∫ ∞

−∞
PDFX(x) PDFY(z− x) dx =

∫ ∞

−∞
λe−λx λe−λ(z−x)dx

Now we have to remember that PDFexpo is 0 for all negative values, but we
can handle that by adjusting the limits of integration:

PDFZ(z) =
∫ z

0
λe−λx λe−λ(z−x) dx

Now we can combine terms and move constants outside the integral:

PDFZ(z) = λ2e−λz
∫ z

0
dx = λ2z e−λz

This, it turns out, is the PDF of an Erlang distribution with parameter k = 2
(see http://wikipedia.org/wiki/Erlang_distribution). So the convolu-
tion of two exponential distributions (with the same parameter) is an Erlang
distribution.
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Exercise 6.7 If X has an exponential distribution with parameter λ, and
Y has an Erlang distribution with parameters k and λ, what is the distri-
bution of the sum Z = X + Y?

Exercise 6.8 Suppose I draw two values from a distribution; what is the
distribution of the larger value? Express your answer in terms of the PDF
or CDF of the distribution.

As the number of values increases, the distribution of the maximum con-
verges on one of the extreme value distributions; see http://wikipedia.

org/wiki/Gumbel_distribution.

Exercise 6.9 If you are given Pmf objects, you can compute the distribution
of the sum by enumerating all pairs of values:

for x in pmf_x.Values():

for y in pmf_y.Values():

z = x + y

Write a function that takes PMFX and PMFY and returns a new Pmf that
represents the distribution of the sum Z = X + Y.

Write a similar function that computes the PMF of Z = max(X, Y).

6.5 Why normal?

I said earlier that normal distributions are amenable to analysis, but I didn’t
say why. One reason is that they are closed under linear transformation and
convolution. To explain what that means, it will help to introduce some
notation.

If the distribution of a random variable, X, is normal with parameters µ and
σ, you can write

X ∼ N (µ, σ2)

where the symbol ∼ means “is distributed” and the script letter N stands
for “normal.”

A linear transformation of X is something like X’ = aX + b, where a and
b are real numbers. A family of distributions is closed under linear trans-
formation if X’ is in the same family as X. The normal distribution has this
property; if X ∼ N (µ, σ2),

X’ ∼ N (aµ + b, a2 σ2)
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Normal distributions are also closed under convolution. If Z = X + Yand
X ∼ N (µX, σX

2) and Y ∼ N (µY, σY
2) then

Z ∼ N (µX + µY, σ2
X + σ2

Y)

The other distributions we have looked at do not have these properties.

Exercise 6.10 If X ∼ N (µX, σX
2) and Y ∼ N (µY, σY

2), what is the distribu-
tion of Z = aX + bY?

Exercise 6.11 Let’s see what happens when we add values from other dis-
tributions. Choose a pair of distributions (any two of exponential, normal,
lognormal, and Pareto) and choose parameters that make their mean and
variance similar.

Generate random numbers from these distributions and compute the distri-
bution of their sums. Use the tests from Chapter 4 to see if the sum can be
modeled by a continuous distribution.

6.6 Central limit theorem

So far we have seen:

• If we add values drawn from normal distributions, the distribution of
the sum is normal.

• If we add values drawn from other distributions, the sum does not
generally have one of the continuous distributions we have seen.

But it turns out that if we add up a large number of values from almost any
distribution, the distribution of the sum converges to normal.

More specifically, if the distribution of the values has mean and standard
deviation µ and σ, the distribution of the sum is approximatelyN (nµ, nσ2).

This is called the Central Limit Theorem. It is one of the most useful tools
for statistical analysis, but it comes with caveats:

• The values have to be drawn independently.

• The values have to come from the same distribution (although this
requirement can be relaxed).
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• The values have to be drawn from a distribution with finite mean and
variance, so most Pareto distributions are out.

• The number of values you need before you see convergence depends
on the skewness of the distribution. Sums from an exponential dis-
tribution converge for small sample sizes. Sums from a lognormal
distribution do not.

The Central Limit Theorem explains, at least in part, the prevalence of nor-
mal distributions in the natural world. Most characteristics of animals and
other life forms are affected by a large number of genetic and environmental
factors whose effect is additive. The characteristics we measure are the sum
of a large number of small effects, so their distribution tends to be normal.

Exercise 6.12 If I draw a sample, x1 .. xn, independently from a distribution
with finite mean µ and variance σ2, what is the distribution of the sample
mean:

x̄ =
1
n ∑ xi

As n increases, what happens to the variance of the sample mean? Hint:
review Section 6.5.

Exercise 6.13 Choose a distribution (one of exponential, lognormal or
Pareto) and choose values for the parameter(s). Generate samples with sizes
2, 4, 8, etc., and compute the distribution of their sums. Use a normal prob-
ability plot to see if the distribution is approximately normal. How many
terms do you have to add to see convergence?

Exercise 6.14 Instead of the distribution of sums, compute the distribution
of products; what happens as the number of terms increases? Hint: look at
the distribution of the log of the products.

6.7 The distribution framework

At this point we have seen PMFs, CDFs and PDFs; let’s take a minute to
review. Figure 6.1 shows how these functions relate to each other.

We started with PMFs, which represent the probabilities for a discrete set
of values. To get from a PMF to a CDF, we computed a cumulative sum.
To be more consistent, a discrete CDF should be called a cumulative mass
function (CMF), but as far as I can tell no one uses that term.
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CDF

(CMF)

PMF

sum diff integrate

PDF

CDF
smooth

bin

Continuous

Cumulative

Discrete

Non−cumulative

differentiate

Figure 6.1: A framework that relates representations of distribution func-
tions.

To get from a CDF to a PMF, you can compute differences in cumulative
probabilities.

Similarly, a PDF is the derivative of a continuous CDF; or, equivalently, a
CDF is the integral of a PDF. But remember that a PDF maps from values to
probability densities; to get a probability, you have to integrate.

To get from a discrete to a continuous distribution, you can perform various
kinds of smoothing. One form of smoothing is to assume that the data come
from an analytic continuous distribution (like exponential or normal) and
to estimate the parameters of that distribution. And that’s what Chapter 8
is about.

If you divide a PDF into a set of bins, you can generate a PMF that is at
least an approximation of the PDF. We use this technique in Chapter 8 to do
Bayesian estimation.

Exercise 6.15 Write a function called MakePmfFromCdf that takes a Cdf object
and returns the corresponding Pmf object.

You can find a solution to this exercise in thinkstats.com/Pmf.py.

6.8 Glossary
skewness: A characteristic of a distribution; intuitively, it is a measure of

how asymmetric the distribution is.

robust: A statistic is robust if it is relatively immune to the effect of outliers.
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illusory superiority: The tendency of people to imagine that they are better
than average.

random variable: An object that represents a random process.

random variate: A value generated by a random process.

PDF: Probability density function, the derivative of a continuous CDF.

convolution: An operation that computes the distribution of the sum of
values from two distributions.

Central Limit Theorem: “The supreme law of Unreason,” according to Sir
Francis Galton, an early statistician.



Chapter 7

Hypothesis testing

Exploring the data from the NSFG, we saw several “apparent effects,” in-
cluding a number of differences between first babies and others. So far we
have taken these effects at face value; in this chapter, finally, we put them to
the test.

The fundamental question we want to address is whether these effects are
real. For example, if we see a difference in the mean pregnancy length for
first babies and others, we want to know whether that difference is real, or
whether it occurred by chance.

That question turns out to be hard to address directly, so we will proceed in
two steps. First we will test whether the effect is significant, then we will
try to interpret the result as an answer to the original question.

In the context of statistics, “significant” has a technical definition that is
different from its use in common language. As defined earlier, an apparent
effect is statistically significant if it is unlikely to have occurred by chance.

To make this more precise, we have to answer three questions:

1. What do we mean by “chance”?

2. What do we mean by “unlikely”?

3. What do we mean by “effect”?

All three of these questions are harder than they look. Nevertheless, there
is a general structure that people use to test statistical significance:
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Null hypothesis: The null hypothesis is a model of the system based on
the assumption that the apparent effect was actually due to chance.

p-value: The p-value is the probability of the apparent effect under the null
hypothesis.

Interpretation: Based on the p-value, we conclude that the effect is either
statistically significant, or not.

This process is called hypothesis testing. The underlying logic is similar to
a proof by contradiction. To prove a mathematical statement, A, you assume
temporarily that A is false. If that assumption leads to a contradiction, you
conclude that A must actually be true.

Similarly, to test a hypothesis like, “This effect is real,” we assume, tem-
porarily, that is is not. That’s the null hypothesis. Based on that assumption,
we compute the probability of the apparent effect. That’s the p-value. If the
p-value is low enough, we conclude that the null hypothesis is unlikely to
be true.

7.1 Testing a difference in means

One of the easiest hypotheses to test is an apparent difference in mean be-
tween two groups. In the NSFG data, we saw that the mean pregnancy
length for first babies is slightly longer, and the mean weight at birth is
slightly smaller. Now we will see if those effects are significant.

For these examples, the null hypothesis is that the distributions for the two
groups are the same, and that the apparent difference is due to chance.

To compute p-values, we find the pooled distribution for all live births (first
babies and others), generate random samples that are the same size as the
observed samples, and compute the difference in means under the null hy-
pothesis.

If we generate a large number of samples, we can count how often the dif-
ference in means (due to chance) is as big or bigger than the difference we
actually observed. This fraction is the p-value.

For pregnancy length, we observed n = 4413 first babies and m = 4735 others,
and the difference in mean was δ = 0.078 weeks. To approximate the p-value
of this effect, I pooled the distributions, generated samples with sizes n and
m and computed the difference in mean.
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Figure 7.1: CDF of difference in mean for resampled data.

This is another example of resampling, because we are drawing a random
sample from a dataset that is, itself, a sample of the general population. I
computed differences for 1000 sample pairs; Figure 7.1 shows their distri-
bution.

The mean difference is near 0, as you would expect with samples from the
same distribution. The vertical lines show the cutoffs where x =−δ or x = δ.

Of 1000 sample pairs, there were 166 where the difference in mean (positive
or negative) was as big or bigger than δ, so the p-value is approximately
0.166. In other words, we expect to see an effect as big as δ about 17% of the
time, even if the actual distribution for the two groups is the same.

So the apparent effect is not very likely, but is it unlikely enough? I’ll ad-
dress that in the next section.

Exercise 7.1 In the NSFG dataset, the difference in mean weight for first
births is 2.0 ounces. Compute the p-value of this difference.

Hint: for this kind of resampling it is important to sample with replace-
ment, so you should use random.choice rather than random.sample (see
Section 3.8).

You can start with the code I used to generate the results in this section,
which you can download from http://thinkstats.com/hypothesis.py.
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7.2 Choosing a threshold

In hypothesis testing we have to worry about two kinds of errors.

• A Type I error, also called a false positive, is when we accept a hy-
pothesis that is actually false; that is, we consider an effect significant
when it was actually due to chance.

• A Type II error, also called a false negative, is when we reject a hy-
pothesis that is actually true; that is, we attribute an effect to chance
when it was actually real.

The most common approach to hypothesis testing is to choose a threshold1,
α, for the p-value and to accept as significant any effect with a p-value less
than α. A common choice for α is 5%. By this criterion, the apparent differ-
ence in pregnancy length for first babies is not significant, but the difference
in weight is.

For this kind of hypothesis testing, we can compute the probability of a false
positive explicitly: it turns out to be α.

To see why, think about the definition of false positive—the chance of ac-
cepting a hypothesis that is false—and the definition of a p-value—the
chance of generating the measured effect if the hypothesis is false.

Putting these together, we can ask: if the hypothesis is false, what is the
chance of generating a measured effect that will be considered significant
with threshold α? The answer is α.

We can decrease the chance of a false positive by decreasing the threshold.
For example, if the threshold is 1%, there is only a 1% chance of a false
positive.

But there is a price to pay: decreasing the threshold raises the standard of
evidence, which increases the chance of rejecting a valid hypothesis.

In general there is a tradeoff between Type I and Type II errors. The only
way to decrease both at the same time is to increase the sample size (or, in
some cases, decrease measurement error).

Exercise 7.2 To investigate the effect of sample size on p-value, see what
happens if you discard half of the data from the NSFG. Hint: use
random.sample. What if you discard three-quarters of the data, and so on?

1Also known as a “Significance criterion.”
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What is the smallest sample size where the difference in mean birth weight
is still significant with α = 5%? How much larger does the sample size have
to be with α = 1%?

You can start with the code I used to generate the results in this section,
which you can download from http://thinkstats.com/hypothesis.py.

7.3 Defining the effect
When something unusual happens, people often say something like, “Wow!
What were the chances of that?” This question makes sense because we
have an intuitive sense that some things are more likely than others. But
this intuition doesn’t always hold up to scrutiny.

For example, suppose I toss a coin 10 times, and after each toss I write down
H for heads and T for tails. If the result was a sequence like THHTHTTTHH,
you wouldn’t be too surprised. But if the result was HHHHHHHHHH, you
would say something like, “Wow! What were the chances of that?”

But in this example, the probability of the two sequences is the same: one in
1024. And the same is true for any other sequence. So when we ask, “What
were the chances of that,” we have to be careful about what we mean by
“that.”

For the NSFG data, I defined the effect as “a difference in mean (positive
or negative) as big or bigger than δ.” By making this choice, I decided to
evaluate the magnitude of the difference, ignoring the sign.

A test like that is called two-sided, because we consider both sides (positive
and negative) in the distribution from Figure 7.1. By using a two-sided test
we are testing the hypothesis that there is a significant difference between
the distributions, without specifying the sign of the difference.

The alternative is to use a one-sided test, which asks whether the mean
for first babies is significantly higher than the mean for others. Because the
hypothesis is more specific, the p-value is lower—in this case it is roughly
half.

7.4 Interpreting the result
At the beginning of this chapter I said that the question we want to address
is whether an apparent effect is real. We started by defining the null hypoth-
esis, denoted H0, which is the hypothesis that the effect is not real. Then we
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defined the p-value, which is P(E|H0), where E is an effect as big as or big-
ger than the apparent effect. Then we computed p-values and compared
them to a threshold, α.

That’s a useful step, but it doesn’t answer the original question, which is
whether the effect is real. There are several ways to interpret the result of a
hypothesis test:

Classical: In classical hypothesis testing, if a p-value is less than α, you can
say that the effect is statistically significant, but you can’t conclude
that it’s real. This formulation is careful to avoid leaping to conclu-
sions, but it is deeply unsatisfying.

Practical: In practice, people are not so formal. In most science journals, re-
searchers report p-values without apology, and readers interpret them
as evidence that the apparent effect is real. The lower the p-value, the
higher their confidence in this conclusion.

Bayesian: What we really want to know is P(HA|E), where HA is the hy-
pothesis that the effect is real. By Bayes’s theorem

P(HA | E) =
P(E | HA) P(HA)

P(E)

where P(HA) is the prior probability of HA before we saw the effect,
P(E|HA) is the probability of seeing E, assuming that the effect is real,
and P(E) is the probability of seeing E under any hypothesis. Since the
effect is either real or it’s not,

P(E) = P(E|HA) P(HA) + P(E|H0) P(H0)

As an example, I’ll compute P(HA|E) for pregnancy lengths in the NSFG.
We have already computed P(E|H0) = 0.166, so all we have to do is compute
P(E|HA) and choose a value for the prior.

To compute P(E|HA), we assume that the effect is real—that is, that the
difference in mean duration, δ, is actually what we observed, 0.078. (This
way of formulating HA is a little bit bogus. I will explain and fix the problem
in the next section.)

By generating 1000 sample pairs, one from each distribution, I estimated
P(E|HA) = 0.494. With the prior P(HA) = 0.5, the posterior probability of
HA is 0.748.

So if the prior probability of HA is 50%, the updated probability, taking into
account the evidence from this dataset, is almost 75%. It makes sense that
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the posterior is higher, since the data provide some support for the hypoth-
esis. But it might seem surprising that the difference is so large, especially
since we found that the difference in means was not statistically significant.

In fact, the method I used in this section is not quite right, and it tends to
overstate the impact of the evidence. In the next section we will correct this
tendency.

Exercise 7.3 Using the data from the NSFG, what is the posterior probability
that the distribution of birth weights is different for first babies and others?

You can start with the code I used to generate the results in this section,
which you can download from http://thinkstats.com/hypothesis.py.

7.5 Cross-validation

In the previous example, we used the dataset to formulate the hypothesis
HA, and then we used the same dataset to test it. That’s not a good idea; it
is too easy to generate misleading results.

The problem is that even when the null hypothesis is true, there is likely to
be some difference, δ, between any two groups, just by chance. If we use
the observed value of δ to formulate the hypothesis, P(HA|E) is likely to be
high even when HA is false.

We can address this problem with cross-validation, which uses one dataset
to compute δ and a different dataset to evaluate HA. The first dataset is called
the training set; the second is called the testing set.

In a study like the NSFG, which studies a different cohort in each cycle, we
can use one cycle for training and another for testing. Or we can partition
the data into subsets (at random), then use one for training and one for
testing.

I implemented the second approach, dividing the Cycle 6 data roughly in
half. I ran the test several times with different random partitions. The aver-
age posterior probability was P(HA|E) = 0.621. As expected, the impact of
the evidence is smaller, partly because of the smaller sample size in the test
set, and also because we are no longer using the same data for training and
testing.
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7.6 Reporting Bayesian probabilities

In the previous section we chose the prior probability P(HA) = 0.5. If we
have a set of hypotheses and no reason to think one is more likely than
another, it is common to assign each the same probability.

Some people object to Bayesian probabilities because they depend on prior
probabilities, and people might not agree on the right priors. For people
who expect scientific results to be objective and universal, this property is
deeply unsettling.

One response to this objection is that, in practice, strong evidence tends to
swamp the effect of the prior, so people who start with different priors will
converge toward the same posterior probability.

Another option is to report just the likelihood ratio, P(E | HA) / P(E|H0),
rather than the posterior probability. That way readers can plug in whatever
prior they like and compute their own posteriors (no pun intended). The
likelihood ratio is sometimes called a Bayes factor (see http://wikipedia.

org/wiki/Bayes_factor).

Exercise 7.4 If your prior probability for a hypothesis, HA, is 0.3 and new
evidence becomes available that yields a likelihood ratio of 3 relative to the
null hypothesis, H0, what is your posterior probability for HA?

Exercise 7.5 This exercise is adapted from MacKay, Information Theory, Infer-
ence, and Learning Algorithms:

Two people have left traces of their own blood at the scene of
a crime. A suspect, Oliver, is tested and found to have type
O blood. The blood groups of the two traces are found to be
of type O (a common type in the local population, having fre-
quency 60%) and of type AB (a rare type, with frequency 1%).
Do these data (the blood types found at the scene) give evidence
in favor of the proposition that Oliver was one of the two people
whose blood was found at the scene?

Hint: Compute the likelihood ratio for this evidence; if it is greater than 1,
then the evidence is in favor of the proposition. For a solution and discus-
sion, see page 55 of MacKay’s book.
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7.7 Chi-square test

In Section 7.2 we concluded that the apparent difference in mean pregnancy
length for first babies and others was not significant. But in Section 2.10,
when we computed relative risk, we saw that first babies are more likely to
be early, less likely to be on time, and more likely to be late.

So maybe the distributions have the same mean and different variance. We
could test the significance of the difference in variance, but variances are less
robust than means, and hypothesis tests for variance often behave badly.

An alternative is to test a hypothesis that more directly reflects the effect as
it appears; that is, the hypothesis that first babies are more likely to be early,
less likely to be on time, and more likely to be late.

We proceed in five easy steps:

1. We define a set of categories, called cells, that each baby might fall
into. In this example, there are six cells because there are two groups
(first babies and others) and three bins (early, on time or late).

I’ll use the definitions from Section 2.10: a baby is early if it is born
during Week 37 or earlier, on time if it is born during Week 38, 39 or
40, and late if it is born during Week 41 or later.

2. We compute the number of babies we expect in each cell. Under the
null hypothesis, we assume that the distributions are the same for the
two groups, so we can compute the pooled probabilities: P(early),
P(ontime) and P(late).

For first babies, we have n = 4413 samples, so under the null hypoth-
esis we expect n P(early) first babies to be early, n P(ontime) to be
on time, etc. Likewise, we have m = 4735 other babies, so we expect
m P(early) other babies to be early, etc.

3. For each cell we compute the deviation; that is, the difference between
the observed value, Oi, and the expected value, Ei.

4. We compute some measure of the total deviation; this quantity is
called the test statistic. The most common choice is the chi-square
statistic:

χ2 = ∑
i

(Oi − Ei)
2

Ei
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5. We can use a Monte Carlo simulation to compute the p-value, which is
the probability of seeing a chi-square statistic as high as the observed
value under the null hypothesis.

When the chi-square statistic is used, this process is called a chi-square test.
One feature of the chi-square test is that the distribution of the test statistic
can be computed analytically.

Using the data from the NSFG I computed χ2 = 91.64, which would occur
by chance about one time in 10,000. I conclude that this result is statisti-
cally significant, with one caution: again we used the same dataset for ex-
ploration and testing. It would be a good idea to confirm this result with
another dataset.

You can download the code I used in this section from http://thinkstats.

com/chi.py.

Exercise 7.6 Suppose you run a casino and you suspect that a customer has
replaced a die provided by the casino with a “crooked die;” that is, one that
has been tampered with to make one of the faces more likely to come up
than the others. You apprehend the alleged cheater and confiscate the die,
but now you have to prove that it is crooked.

You roll the die 60 times and get the following results:

Value 1 2 3 4 5 6
Frequency 8 9 19 6 8 10

What is the chi-squared statistic for these values? What is the probability of
seeing a chi-squared value as large by chance?

7.8 Efficient resampling

Anyone reading this book who has prior training in statistics probably
laughed when they saw Figure 7.1, because I used a lot of computer power
to simulate something I could have figured out analytically.

Obviously mathematical analysis is not the focus of this book. I am willing
to use computers to do things the “dumb” way, because I think it is eas-
ier for beginners to understand simulations, and easier to demonstrate that
they are correct. So as long as the simulations don’t take too long to run, I
don’t feel guilty for skipping the analysis.
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However, there are times when a little analysis can save a lot of computing,
and Figure 7.1 is one of those times.

Remember that we were testing the observed difference in the mean be-
tween pregnancy lengths for n = 4413 first babies and m = 4735 others. We
formed the pooled distribution for all babies, drew samples with sizes n and
m, and computed the difference in sample means.

Instead, we could directly compute the distribution of the difference in sam-
ple means. To get started, let’s think about what a sample mean is: we draw
n samples from a distribution, add them up, and divide by n. If the distri-
bution has mean µ and variance σ2, then by the Central Limit Theorem, we
know that the sum of the samples is N (nµ, nσ2).

To figure out the distribution of the sample means, we have to invoke one
of the properties of the normal distribution: if X is N (µ, σ2),

aX + b ∼ N (aµ + b, a2 σ2)

When we divide by n, a = 1/nand b = 0, so

X/n ∼ N (µ/n, σ2/ n2)

So the distribution of the sample mean is N (µ, σ2/n).

To get the distribution of the difference between two sample means, we
invoke another property of the normal distribution: if X1 is N (µ1, σ1

2) and
X2 is N (µ2, σ2

2),

aX1 + bX2 ∼ N (aµ1 + bµ2, a2σ2
1 + b2σ2

2 )

So as a special case:

X1 − X2 ∼ N (µ1 − µ2, σ2
1 + σ2

2 )

Putting it all together, we conclude that the sample in Figure 7.1 is drawn
from N (0, f σ2), where f = 1/n + 1/m. Plugging in n = 4413 and m = 4735,
we expect the difference of sample means to be N (0, 0.0032).

We can use erf.NormalCdf to compute the p-value of the observed differ-
ence in the means:

delta = 0.078

sigma = math.sqrt(0.0032)

left = erf.NormalCdf(-delta, 0.0, sigma)

right = 1 - erf.NormalCdf(delta, 0.0, sigma)
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The sum of the left and right tails is the p-value, 0.168, which is pretty close
to what we estimated by resampling, 0.166. You can download the code I
used in this section from http://thinkstats.com/hypothesis_analytic.

py

7.9 Power

When the result of a hypothesis test is negative (that is, the effect is not
statistically significant), can we conclude that the effect is not real? That
depends on the power of the test.

Statistical power is the probability that the test will be positive if the null
hypothesis is false. In general, the power of a test depends on the sample
size, the magnitude of the effect, and the threshold α.

Exercise 7.7 What is the power of the test in Section 7.2, using α = 0.05 and
assuming that the actual difference between the means is 0.078 weeks?

You can estimate power by generating random samples from distributions
with the given difference in the mean, testing the observed difference in the
mean, and counting the number of positive tests.

What is the power of the test with α = 0.10?

One way to report the power of a test, along with a negative result, is to
say something like, “If the apparent effect were as large as x, this test would
reject the null hypothesis with probability p.”

7.10 Glossary
significant: An effect is statistically significant if it is unlikely to occur by

chance.

null hypothesis: A model of a system based on the assumption that an ap-
parent effect is due to chance.

p-value: The probability that an effect could occur by chance.

hypothesis testing: The process of determining whether an apparent effect
is statistically significant.

false positive: The conclusion that an effect is real when it is not.
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false negative: The conclusion that an effect is due to chance when it is not.

two-sided test: A test that asks, “What is the chance of an effect as big as
the observed effect, positive or negative?”

one-sided test: A test that asks, “What is the chance of an effect as big as
the observed effect, and with the same sign?”

cross-validation: A process of hypothesis testing that uses one dataset for
exploratory data analysis and another dataset for testing.

training set: A dataset used to formulate a hypothesis for testing.

testing set: A dataset used for testing.

test statistic: A statistic used to measure the deviation of an apparent effect
from what is expected by chance.

chi-square test: A test that uses the chi-square statistic as the test statistic.

likelihood ratio: The ratio of P(E|A) to P(E|B) for two hypotheses A and
B, which is a way to report results from a Bayesian analysis without
depending on priors.

cell: In a chi-square test, the categories the observations are divided into.

power: The probability that a test will reject the null hypothesis if it is false.
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Chapter 8

Estimation

8.1 The estimation game

Let’s play a game. I’ll think of a distribution, and you have to guess what it
is. We’ll start out easy and work our way up.

I’m thinking of a distribution. I’ll give you two hints; it’s a normal distribution,
and here’s a random sample drawn from it:

{−0.441, 1.774, −0.101, −1.138, 2.975, −2.138}

What do you think is the mean parameter, µ, of this distribution?

One choice is to use the sample mean to estimate µ. Up until now we have
used the symbol µ for both the sample mean and the mean parameter, but
now to distinguish them I will use x̄ for the sample mean. In this example,
x̄ is 0.155, so it would be reasonable to guess µ = 0.155.

This process is called estimation, and the statistic we used (the sample
mean) is called an estimator.

Using the sample mean to estimate µ is so obvious that it is hard to imagine
a reasonable alternative. But suppose we change the game by introducing
outliers.

I’m thinking of a distribution. It’s a normal distribution, and here’s a sam-
ple that was collected by an unreliable surveyor who occasionally puts the
decimal point in the wrong place.

{−0.441, 1.774, −0.101, −1.138, 2.975, −213.8}



94 Chapter 8. Estimation

Now what’s your estimate of µ? If you use the sample mean your guess is
−35.12. Is that the best choice? What are the alternatives?

One option is to identify and discard outliers, then compute the sample
mean of the rest. Another option is to use the median as an estimator.

Which estimator is the best depends on the circumstances (for example,
whether there are outliers) and on what the goal is. Are you trying to mini-
mize errors, or maximize your chance of getting the right answer?

If there are no outliers, the sample mean minimizes the mean squared error
(MSE). If we play the game many times, and each time compute the error
x̄ − µ, the sample mean minimizes

MSE =
1
m ∑(x̄− µ)2

Where m is the number of times you play the estimation game (not to be
confused with n, which is the size of the sample used to compute x̄).

Minimizing MSE is a nice property, but it’s not always the best strategy.
For example, suppose we are estimating the distribution of wind speeds
at a building site. If we guess too high, we might overbuild the structure,
increasing its cost. But if we guess too low, the building might collapse.
Because cost as a function of error is asymmetric, minimizing MSE is not
the best strategy.

As another example, suppose I roll three six-sided dice and ask you to pre-
dict the total. If you get it exactly right, you get a prize; otherwise you get
nothing. In this case the value that minimizes MSE is 10.5, but that would
be a terrible guess. For this game, you want an estimator that has the high-
est chance of being right, which is a maximum likelihood estimator (MLE).
If you pick 10 or 11, your chance of winning is 1 in 8, and that’s the best you
can do.

Exercise 8.1 Write a function that draws 6 values from a normal distribution
with µ = 0 and σ = 1. Use the sample mean to estimate µ and compute the
error x̄ − µ. Run the function 1000 times and compute MSE.

Now modify the program to use the median as an estimator. Compute MSE
again and compare to the MSE for x̄.

8.2 Guess the variance
I’m thinking of a distribution. It’s a normal distribution, and here’s a (familiar)
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sample:

{−0.441, 1.774, −0.101, −1.138, 2.975, −2.138}

What do you think is the variance, σ2, of my distribution? Again, the ob-
vious choice is to use the sample variance as an estimator. I will use S2to
denote the sample variance, to distinguish from the unknown parameter
σ2.

S2 =
1
n ∑(xi − x̄)2

For large samples, S2is an adequate estimator, but for small samples it tends
to be too low. Because of this unfortunate property, it is called a biased
estimator.

An estimator is unbiased if the expected total (or mean) error, after many
iterations of the estimation game, is 0. Fortunately, there is another simple
statistic that is an unbiased estimator of σ2:

S2
n−1 =

1
n− 1 ∑(xi − x̄)2

The biggest problem with this estimator is that its name and symbol are
used inconsistently. The name “sample variance” can refer to either S2or
S2

n−1, and the symbol S2is used for either or both.

For an explanation of why S2is biased, and a proof that S2
n−1is unbiased, see

http://wikipedia.org/wiki/Bias_of_an_estimator.

Exercise 8.2 Write a function that draws 6 values from a normal distribution
with µ = 0 and σ = 1. Use the sample variance to estimate σ2 and compute
the error S2 − σ2. Run the function 1000 times and compute mean error (not
squared).

Now modify the program to use the unbiased estimator S2
n−1. Compute the

mean error again and see if it converges to zero as you increase the number
of games.

8.3 Understanding errors

Before we go on, let’s clear up a common source of confusion. Properties
like MSE and bias are long-term expectations based on many iterations of
the estimation game.
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While you are playing the game, you don’t know the errors. That is, if I
give you a sample and ask you to estimate a parameter, you can compute
the value of the estimator, but you can’t compute the error. If you could,
you wouldn’t need the estimator!

The reason we talk about estimation error is to describe the behavior of
different estimators in the long run. In this chapter we run experiments to
examine those behaviors; these experiments are artificial in the sense that
we know the actual values of the parameters, so we can compute errors.
But when you work with real data, you don’t, so you can’t.

Now let’s get back to the game.

8.4 Exponential distributions
I’m thinking of a distribution. It’s an exponential distribution, and here’s a
sample:

{5.384, 4.493, 19.198, 2.790, 6.122, 12.844}

What do you think is the parameter, λ, of this distribution?

In general, the mean of an exponential distribution is 1/λ, so working back-
wards, we might choose

λ̂ = 1 / x̄

It is common to use hat notation for estimators, so λ̂ is an estimator of λ.
And not just any estimator; it is also the MLE estimator1. So if you want to
maximize your chance of guessing λ exactly, λ̂ is the way to go.

But we know that x̄ is not robust in the presence of outliers, so we expect λ̂
to have the same problem.

Maybe we can find an alternative based on the sample median. Remem-
ber that the median of an exponential distribution is ln(2) / λ, so working
backwards again, we can define an estimator

λ̂1/2 = ln(2)/µ1/2

where µ1/2 is the sample median.

Exercise 8.3 Run an experiment to see which of λ̂ and λ̂1/2 yields lower
MSE. Test whether either of them is biased.

1See http://wikipedia.org/wiki/Exponential_distribution#Maximum_

likelihood.
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8.5 Confidence intervals
So far we have looked at estimators that generate single values, known as
point estimates. For many problems, we might prefer an interval that spec-
ifies an upper and lower bound on the unknown parameter.

Or, more generally, we might want that whole distribution; that is, the range
of values the parameter could have, and for each value in the range, a notion
of how likely it is.

Let’s start with confidence intervals.

I’m thinking of a distribution. It’s an exponential distribution, and here’s a
sample:

{5.384, 4.493, 19.198, 2.790, 6.122, 12.844}

I want you to give me a range of values that you think is likely to contain the
unknown parameter λ. More specifically, I want a 90% confidence interval,
which means that if we play this game over and over, your interval will
contain λ 90% of the time.

It turns out that this version of the game is hard, so I’m going to tell you the
answer, and all you have to do is test it.

Confidence intervals are usually described in terms of the miss rate, α, so a
90% confidence interval has miss rate α = 0.1. The confidence interval for
the λ parameter of an exponential distribution is(

λ̂
χ2(2n, 1− α/2)

2n
, λ̂

χ2(2n, α/2)
2n

)
where n is the sample size, λ̂ is the mean-based estimator from the previous
section, and χ2(k, x) is the CDF of a chi-squared distribution with k degrees
of freedom, evaluated at x (see http://wikipedia.org/wiki/Chi-square_

distribution).

In general, confidence intervals are hard to compute analytically, but rel-
atively easy to estimate using simulation. But first we need to talk about
Bayesian estimation.

8.6 Bayesian estimation
If you collect a sample and compute a 90% confidence interval, it is tempting
to say that the true value of the parameter has a 90% chance of falling in the
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interval. But from a frequentist point of view, that is not correct because the
parameter is an unknown but fixed value. It is either in the interval you
computed or not, so the frequentist definition of probability doesn’t apply.

So let’s try a different version of the game.

I’m thinking of a distribution. It’s an exponential distribution, and I chose
λ from a uniform distribution between 0.5 and 1.5. Here’s a sample, which
I’ll call X:

{2.675, 0.198, 1.152, 0.787, 2.717, 4.269}

Based on this sample, what value of λ do you think I chose?

In this version of the game, λ is a random quantity, so we can reasonably talk
about its distribution, and we can compute it easily using Bayes’s theorem.

Here are the steps:

1. Divide the range (0.5, 1.5) into a set of equal-sized bins. For each bin,
we define Hi, which is the hypothesis that the actual value of λ falls in
the i th bin. Since λ was drawn from a uniform distribution, the prior
probability, P(Hi), is the same for all i.

2. For each hypothesis, we compute the likelihood, P(X|Hi), which is
the chance of drawing the sample X given Hi.

P(X | Hi) = ∏
j

expo(λi, xj)

where expo(λ, x) is a function that computes the PDF of the exponen-
tial distribution with parameter λ, evaluated at x.

PDFexpo(λ, x) = λe−λx

The symbol ∏ represents the product of a sequence (see http://

wikipedia.org/wiki/Multiplication#Capital_Pi_notation).

3. Then by Bayes’s theorem the posterior distribution is

P(Hi|X) = P(Hi) P(X|Hi) / f

where f is the normalization factor

f = ∑
i

P(Hi)P(X | Hi)
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Given a posterior distribution, it is easy to compute a confidence interval.
For example, to compute a 90% CI, you can use the 5th and 95th percentiles
of the posterior.

Bayesian confidence intervals are sometimes called credible intervals; for a
discussion of the differences, see http://wikipedia.org/wiki/Credible_

interval.

8.7 Implementing Bayesian estimation

To represent the prior distribution, we could use a Pmf, Cdf, or any other
representation of a distribution, but since we want to map from a hypothesis
to a probability, a Pmf is a natural choice.

Each value in the Pmf represents a hypothesis; for example, the value 0.5
represents the hypothesis that λ is 0.5. In the prior distribution, all hypothe-
ses have the same probability. So we can construct the prior like this:

def MakeUniformSuite(low, high, steps):

hypos = [low + (high-low) * i / (steps-1.0) for i in range(steps)]

pmf = Pmf.MakePmfFromList(hypos)

return pmf

This function makes and returns a Pmf that represents a collection of related
hypotheses, called a suite. Each hypothesis has the same probability, so the
distribution is uniform.

The arguments low and high specify the range of values; steps is the num-
ber of hypotheses.

To perform the update, we take a suite of hypotheses and a body of evi-
dence:

def Update(suite, evidence):

for hypo in suite.Values():

likelihood = Likelihood(evidence, hypo)

suite.Mult(hypo, likelihood)

suite.Normalize()

For each hypothesis in the suite, we multiply the prior probability by the
likelihood of the evidence. Then we normalize the suite.

In this function, suite has to be a Pmf, but evidence can be any type, as
long as Likelihood knows how to interpret it.
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Here’s the likelihood function:

def Likelihood(evidence, hypo):

param = hypo

likelihood = 1

for x in evidence:

likelihood *= ExpoPdf(x, param)

return likelihood

In Likelihood we assume that evidence is a sample from an exponential
distribution and compute the product in the previous section.

ExpoPdf evaluates the PDF of the exponential distribution at x:

def ExpoPdf(x, param):

p = param * math.exp(-param * x)

return p

Putting it all together, here’s the code that creates the prior and computes
the posterior:

evidence = [2.675, 0.198, 1.152, 0.787, 2.717, 4.269]

prior = MakeUniformSuite(0.5, 1.5, 100)

posterior = prior.Copy()

Update(posterior, evidence)

You can download the code in this section from http://thinkstats.com/

estimate.py.

When I think of Bayesian estimation, I imagine a room full of people, where
each person has a different guess about whatever you are trying to estimate.
So in this example they each have a guess about the correct value of λ.

Initially, each person has a degree of confidence about their own hypothesis.
After seeing the evidence, each person updates their confidence based on
P(E|H), the likelihood of the evidence, given their hypothesis.

Most often the likelihood function computes a probability, which is at most
1, so initially everyone’s confidence goes down (or stays the same). But then
we normalize, which increases everyone’s confidence.

So the net effect is that some people get more confident, and some less,
depending on the relative likelihood of their hypothesis.
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8.8 Censored data

The following problem appears in Chapter 3 of David MacKay’s Informa-
tion Theory, Inference and Learning Algorithms, which you can download from
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/.

Unstable particles are emitted from a source and decay at a dis-
tance x, a real number that has an exponential probability distri-
bution with [parameter] λ. Decay events can only be observed
if they occur in a window extending from x = 1 cm to x = 20 cm.
n decays are observed at locations { x1, ... , xN }. What is λ?

This is an example of an estimation problem with censored data; that is, we
know that some data are systematically excluded.

One of the strengths of Bayesian estimation is that it can deal with censored
data with relative ease. We can use the method from the previous section
with only one change: we have to replace PDFexpo with the conditional dis-
tribution:

PDFcond(λ, x) = λe−λx/Z(λ)

for 1 < x < 20, and 0 otherwise, with

Z(λ) =
∫ 20

1
λe−λx dx = e−λ − e−20λ

You might remember Z(λ) from Exercise 6.5. I told you to keep it handy.

Exercise 8.4 Download http://thinkstats.com/estimate.py, which con-
tains the code from the previous section, and make a copy named decay.py.

Modify decay.py to compute the posterior distribution of λ for the sample
X = {1.5, 2, 3, 4, 5, 12}. For the prior you can use a uniform distribution
between 0 and 1.5 (not including 0).

You can download a solution to this problem from http://thinkstats.

com/decay.py.

Exercise 8.5 In the 2008 Minnesota Senate race the final vote count was
1,212,629 votes for Al Franken and 1,212,317 votes for Norm Coleman.
Franken was declared the winner, but as Charles Seife points out in Proofi-
ness, the margin of victory was much smaller than the margin of error, so
the result should have been considered a tie.
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Assuming that there is a chance that any vote might be lost and a chance that
any vote might be double-counted, what is the probability that Coleman
actually received more votes?

Hint: you will have to fill in some details to model the error process.

8.9 The locomotive problem

The locomotive problem is a classic estimation problem also known as the
“German tank problem.” Here is the version that appears in Mosteller, Fifty
Challenging Problems in Probability:

“A railroad numbers its locomotives in order 1..N. One day you
see a locomotive with the number 60. Estimate how many loco-
motives the railroad has.”

Before you read the rest of this section, try to answer these questions:

1. For a given estimate, N̂, what is the likelihood of the evidence,
P(E|N̂)? What is the maximum likelihood estimator?

2. If we see train i it seems reasonable that we would guess some mul-
tiple of i so let’s assume N̂ = ai. What value of a minimizes mean
squared error?

3. Still assuming that N̂ = ai can you find a value of a that makes N̂ an
unbiased estimator?

4. For what value of N is 60 the average value?

5. What is the Bayesian posterior distribution assuming a prior distribu-
tion that is uniform from 1 to 200?

For best results, you should take some time to work on these questions be-
fore you continue.

For a given estimate, N̂, the likelihood of seeing train i is 1/N̂ if i ≤ N̂, and
0 otherwise. So the MLE is N̂ = i. In other words, if you see train 60 and
you want to maximize your chance of getting the answer exactly right, you
should guess that there are 60 trains.

But this estimator doesn’t do very well in terms of MSE. We can do better
by choosing N̂ = ai; all we have to do is find a good value for a.
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Suppose that there are, in fact, N trains. Each time we play the estimation
game, we see train i and guess ai, so the squared error is (ai − N)2.

If we play the game N times and see each train once, the mean squared error
is

MSE =
1
N

N

∑
i=1

(ai− N)2

To minimize MSE, we take the derivative with respect to a:

dMSE
da

=
1
N

N

∑
i=1

2i(ai− N) = 0

And solve for a.
a =

3N
2N + 1

At first glance, that doesn’t seem very useful, because N appears on the
right-hand side, which suggests that we need to know N to choose a, but if
we knew N, we wouldn’t need an estimator in the first place.

However, for large values of N, the optimal value for a converges to 3/2, so
we could choose N̂ = 3i/ 2.

To find an unbiased estimator, we can compute the mean error (ME):

ME =
1
N

N

∑
i=1

(ai− N)

And find the value of a that yields ME = 0, which turns out to be

a =
2N

N + 1

For large values of N, a converges to 2, so we could choose N̂ = 2i.

So far we have generated three estimators, i, 3i/2, and 2i, that have the
properties of maximizing likelihood, minimizing squared error, and being
unbiased.

Yet another way to generate an estimator is to choose the value that makes
the population mean equal the sample mean. If we see train i, the sample
mean is just i; the train population that has the same mean is N̂ = 2i − 1.
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Figure 8.1: Posterior distribution of the number of trains.

Finally, to compute the Bayesian posterior distribution, we compute

P(Hn | i) =
P(i | Hn)P(Hn)

P(i)

Where Hn is the hypothesis that there are n trains, and i is the evidence: we
saw train i. Again, P(i|Hn) is 1/n if i < n, and 0 otherwise. The normalizing
constant, P(i), is just the sum of the numerators for each hypothesis.

If the prior distribution is uniform from 1 to 200, we start with 200 hypothe-
ses and compute the likelihood for each. You can download an implementa-
tion from http://thinkstats.com/locomotive.py. Figure 8.1 shows what
the result looks like.

The 90% credible interval for this posterior is [63, 189], which is still quite
wide. Seeing one train doesn’t provide strong evidence for any of the hy-
potheses (although it does rule out the hypotheses with n < i).

If we start with a different prior, the posterior is significantly different,
which helps to explain why the other estimators are so diverse.

One way to think of different estimators is that they are implicitly based
on different priors. If there is enough evidence to swamp the priors, then
all estimators tend to converge; otherwise, as in this case, there is no single
estimator that has all of the properties we might want.

Exercise 8.6 Generalize locomotive.py to handle the case where you see
more than one train. You should only have to change a few lines of code.
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See if you can answer the other questions for the case where you see more
than one train. You can find a discussion of the problem and several solu-
tions at http://wikipedia.org/wiki/German_tank_problem.

8.10 Glossary
estimation: The process of inferring the parameters of a distribution from

a sample.

estimator: A statistic used to estimate a parameter.

mean squared error: A measure of estimation error.

maximum likelihood estimator: An estimator that computes the point es-
timate with the highest likelihood.

bias: The tendency of an estimator to be above or below the actual value of
the parameter, when averaged over repeated samples.

point estimate: An estimate expressed as a single value.

confidence interval: An estimate expressed as an interval with a given
probability of containing the true value of the parameter.

credible interval: Another name for a Bayesian confidence interval.

censored data: A dataset sampled in a way that systematically excludes
some data.
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Chapter 9

Correlation

9.1 Standard scores

In this chapter we look at relationships between variables. For example, we
have a sense that height is related to weight; people who are taller tend to
be heavier. Correlation is a description of this kind of relationship.

A challenge in measuring correlation is that the variables we want to com-
pare might not be expressed in the same units. For example, height might
be in centimeters and weight in kilograms. And even if they are in the same
units, they come from different distributions.

There are two common solutions to these problems:

1. Transform all values to standard scores. This leads to the Pearson
coefficient of correlation.

2. Transform all values to their percentile ranks. This leads to the Spear-
man coefficient.

If X is a series of values, xi, we can convert to standard scores by subtracting
the mean and dividing by the standard deviation: zi = (xi − µ) / σ.

The numerator is a deviation: the distance from the mean. Dividing by
σ normalizes the deviation, so the values of Z are dimensionless (no units)
and their distribution has mean 0 and variance 1.

If X is normally-distributed, so is Z; but if X is skewed or has outliers, so
does Z. In those cases it is more robust to use percentile ranks. If Rcontains
the percentile ranks of the values in X, the distribution of Ris uniform be-
tween 0 and 100, regardless of the distribution of X.
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9.2 Covariance
Covariance is a measure of the tendency of two variables to vary together.
If we have two series, X and Y, their deviations from the mean are

dxi = xi − µX

dyi = yi − µY

where µX is the mean of X and µY is the mean of Y. If X and Y vary together,
their deviations tend to have the same sign.

If we multiply them together, the product is positive when the deviations
have the same sign and negative when they have the opposite sign. So
adding up the products gives a measure of the tendency to vary together.

Covariance is the mean of these products:

Cov(X, Y) =
1
n ∑ dxidyi

where n is the length of the two series (they have to be the same length).

Covariance is useful in some computations, but it is seldom reported as a
summary statistic because it is hard to interpret. Among other problems, its
units are the product of the units of X and Y. So the covariance of weight
and height might be in units of kilogram-meters, which doesn’t mean much.

Exercise 9.1 Write a function called Cov that takes two lists and computes
their covariance. To test your function, compute the covariance of a list
with itself and confirm that Cov(X, X) = Var(X).

You can download a solution from http://thinkstats.com/correlation.

py.

9.3 Correlation
One solution to this problem is to divide the deviations by σ, which yields
standard scores, and compute the product of standard scores:

pi =
(xi − µX)

σX

(yi − µY)

σY

The mean of these products is

ρ =
1
n ∑ pi
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Figure 9.1: Examples of datasets with a range of correlations.

Or we can rewrite ρ by factoring out σX and σY:

ρ =
Cov(X, Y)

σXσY

This value is called Pearson’s correlation after Karl Pearson, an influential
early statistician. It is easy to compute and easy to interpret. Because stan-
dard scores are dimensionless, so is ρ.

Pearson’s correlation is always between -1 and +1 (including both). The
magnitude indicates the strength of the correlation. If ρ = 1 the variables
are perfectly correlated, which means that if you know one, you can make
a perfect prediction about the other. The same is true if ρ = −1. It means
that the variables are negatively correlated, but for purposes of prediction,
a negative correlation is just as good as a positive one.

Most correlation in the real world is not perfect, but it is still useful. For
example, if you know someone’s height, you might be able to guess their
weight. You might not get it exactly right, but your guess will be better
than if you didn’t know the height. Pearson’s correlation is a measure of
how much better.

So if ρ = 0, does that mean there is no relationship between the variables?
Unfortunately, no. Pearson’s correlation only measures linear relationships.
If there’s a nonlinear relationship, ρ understates the strength of the depen-
dence.

Figure 9.1 is from http://wikipedia.org/wiki/Correlation_and_
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Figure 9.2: Simple scatterplot of weight versus height for the respondents
in the BRFSS.

dependence. It shows scatterplots and correlation coefficients for several
carefully-constructed datasets.

The top row shows linear relationships with a range of correlations; you
can use this row to get a sense of what different values of ρ look like.
The second row shows perfect correlations with a range of slopes, which
demonstrates that correlation is unrelated to slope (we’ll talk about esti-
mating slope soon). The third row shows variables that are clearly related,
but because the relationship is non-linear, the correlation coefficient is 0.

The moral of this story is that you should always look at a scatterplot of
your data before blindly computing a correlation coefficient.

Exercise 9.2 Write a function called Corr that takes two lists and computes
their correlation. Hint: use thinkstats.Var and the Cov function you wrote
in the previous exercise.

To test your function, compute the covariance of a list with itself and
confirm that Corr(X, X) is 1. You can download a solution from http:

//thinkstats.com/correlation.py.

9.4 Making scatterplots in pyplot

The simplest way to check for a relationship between two variables is a scat-
terplot, but making a good scatterplot is not always easy. As an example, I’ll
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Figure 9.3: Scatterplot with jittered data.
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Figure 9.4: Scatterplot with jittering and transparency.
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Figure 9.5: Scatterplot with binned data using pyplot.hexbin.

plot weight versus height for the respondents in the BRFSS (see Section 4.5).
pyplot provides a function named scatter that makes scatterplots:

import matplotlib.pyplot as pyplot

pyplot.scatter(heights, weights)

Figure 9.2 shows the result. Not surprisingly, it looks like there is a positive
correlation: taller people tend to be heavier. But this is not the best represen-
tation of the data, because the data are packed into columns. The problem is
that the heights were rounded to the nearest inch, converted to centimeters,
and then rounded again. Some information is lost in translation.

We can’t get that information back, but we can minimize the effect on the
scatterplot by jittering the data, which means adding random noise to re-
verse the effect of rounding off. Since these measurements were rounded to
the nearest inch, they can be off by up to 0.5 inches or 1.3 cm. So I added
uniform noise in the range −1.3 to 1.3:

jitter = 1.3

heights = [h + random.uniform(-jitter, jitter) for h in heights]

Figure 9.3 shows the result. Jittering the data makes the shape of the re-
lationship clearer. In general you should only jitter data for purposes of
visualization and avoid using jittered data for analysis.

Even with jittering, this is not the best way to represent the data. There are
many overlapping points, which hides data in the dense parts of the figure
and gives disproportionate emphasis to outliers.



9.5. Spearman’s rank correlation 113

We can solve that with the alpha parameter, which makes the points partly
transparent:

pyplot.scatter(heights, weights, alpha=0.2)

Figure 9.4 shows the result. Overlapping data points look darker, so dark-
ness is proportional to density. In this version of the plot we can see an
apparent artifact: a horizontal line near 90 kg or 200 pounds. Since this
data is based on self-reports in pounds, the most likely explanation is some
responses were rounded off (possibly down).

Using transparency works well for moderate-sized datasets, but this figure
only shows the first 1000 records in the BRFSS, out of a total of 414509.

To handle larger datasets, one option is a hexbin plot, which divides the
graph into hexagonal bins and colors each bin according to how many data
points fall in it. pyplot provides a function called hexbin:

pyplot.hexbin(heights, weights, cmap=matplotlib.cm.Blues)

Figure 9.5 shows the result with a blue colormap. An advantage of a hexbin
is that it shows the shape of the relationship well, and it is efficient for large
datasets. A drawback is that it makes the outliers invisible.

The moral of this story is that it is not easy to make a scatterplot that is not
potentially misleading. You can download the code for these figures from
http://thinkstats.com/brfss_scatter.py.

9.5 Spearman’s rank correlation

Pearson’s correlation works well if the relationship between variables is lin-
ear and if the variables are roughly normal. But it is not robust in the pres-
ence of outliers.

Anscombe’s quartet demonstrates this effect; it contains four data sets with
the same correlation. One is a linear relation with random noise, one is a
non-linear relation, one is a perfect relation with an outlier, and one has no
relation except an artifact caused by an outlier. You can read more about it
at http://wikipedia.org/wiki/Anscombe's_quartet.

Spearman’s rank correlation is an alternative that mitigates the effect of out-
liers and skewed distributions. To compute Spearman’s correlation, we
have to compute the rank of each value, which is its index in the sorted
sample. For example, in the sample {7, 1, 2, 5} the rank of the value 5 is 3,
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because it appears third if we sort the elements. Then we compute Pearson’s
correlation for the ranks.

An alternative to Spearman’s is to apply a transform that makes the data
more nearly normal, then compute Pearson’s correlation for the trans-
formed data. For example, if the data are approximately lognormal, you
could take the log of each value and compute the correlation of the logs.

Exercise 9.3 Write a function that takes a sequence and returns a list that
contains the rank for each element. For example, if the sequence is {7, 1, 2,
5}, the result should be { 4, 1, 2, 3}.

If the same value appears more than once, the strictly correct solution is to
assign each of them the average of their ranks. But if you ignore that and
assign them ranks in arbitrary order, the error is usually small.

Write a function that takes two sequences (with the same length) and com-
putes their Spearman rank coefficient. You can download a solution from
http://thinkstats.com/correlation.py.

Exercise 9.4 Download http://thinkstats.com/brfss.py and http://

thinkstats.com/brfss_scatter.py. Run them and confirm that you can
read the BRFSS data and generate scatterplots.

Comparing the scatterplots to Figure 9.1, what value do you expect for Pear-
son’s correlation? What value do you get?

Because the distribution of adult weight is lognormal, there are outliers that
affect the correlation. Try plotting log(weight) versus height, and compute
Pearson’s correlation for the transformed variable.

Finally, compute Spearman’s rank correlation for weight and height. Which
coefficient do you think is the best measure of the strength of the relation-
ship? You can download a solution from http://thinkstats.com/brfss_

corr.py.

9.6 Least squares fit
Correlation coefficients measure the strength and sign of a relationship, but
not the slope. There are several ways to estimate the slope; the most com-
mon is a linear least squares fit. A “linear fit” is a line intended to model the
relationship between variables. A “least squares” fit is one that minimizes
the mean squared error (MSE) between the line and the data1.

1See http://wikipedia.org/wiki/Simple_linear_regression.
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Suppose we have a sequence of points, Y, that we want to express as a
function of another sequence X. If there is a linear relationship between
X and Y with intercept α and slope β, we expect each yi to be roughly α +
β xi.

But unless the correlation is perfect, this prediction is only approximate.
The deviation, or residual, is

εi = (α + βxi) − yi

The residual might be due to random factors like measurement error, or
non-random factors that are unknown. For example, if we are trying to
predict weight as a function of height, unknown factors might include diet,
exercise, and body type.

If we get the parameters α and β wrong, the residuals get bigger, so it makes
intuitive sense that the parameters we want are the ones that minimize the
residuals.

As usual, we could minimize the absolute value of the residuals, or their
squares, or their cubes, etc. The most common choice is to minimize the
sum of squared residuals

min
α,β

∑ ε2
i

Why? There are three good reasons and one bad one:

• Squaring has the obvious feature of treating positive and negative
residuals the same, which is usually what we want.

• Squaring gives more weight to large residuals, but not so much weight
that the largest residual always dominates.

• If the residuals are independent of x, random, and normally dis-
tributed with µ = 0 and constant (but unknown) σ, then the least
squares fit is also the maximum likelihood estimator of α and β.2

• The values of α̂ and β̂ that minimize the squared residuals can be com-
puted efficiently.

That last reason made sense when computational efficiency was more im-
portant than choosing the method most appropriate to the problem at hand.
That’s no longer the case, so it is worth considering whether squared resid-
uals are the right thing to minimize.

2See Press et al., Numerical Recipes in C, Chapter 15 at http://www.nrbook.com/a/

bookcpdf/c15-1.pdf.
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For example, if you are using values of X to predict values of Y, guessing
too high might be better (or worse) than guessing too low. In that case you
might want to compute some cost function, cost(εi), and minimize total cost.

However, computing a least squares fit is quick, easy and often good
enough, so here’s how:

1. Compute the sample means, x̄ and ȳ, the variance of X, and the co-
variance of X and Y.

2. The estimated slope is

β̂ =
Cov(X, Y)

Var(X)

3. And the intercept is
α̂ = ȳ− β̂x̄

To see how this is derived, you can read http://wikipedia.org/wiki/

Numerical_methods_for_linear_least_squares.

Exercise 9.5 Write a function named LeastSquares that takes X and Y and
computes α̂ and β̂. You can download a solution from http://thinkstats.

com/correlation.py.

Exercise 9.6 Using the data from the BRFSS again, compute the linear least
squares fit for log(weight) versus height. You can download a solution from
http://thinkstats.com/brfss_corr.py.

Exercise 9.7 The distribution of wind speeds in a given location deter-
mines the wind power density, which is an upper bound on the aver-
age power that a wind turbine at that location can generate. According
to some sources, empirical distributions of wind speed are well modeled
by a Weibull distribution (see http://wikipedia.org/wiki/Wind_power#

Distribution_of_wind_speed).

To evaluate whether a location is a viable site for a wind turbine, you can
set up an anemometer to measure wind speed for a period of time. But it is
hard to measure the tail of the wind speed distribution accurately because,
by definition, events in the tail don’t happen very often.

One way to address this problem is to use measurements to estimate the
parameters of a Weibull distribution, then integrate over the continuous
PDF to compute wind power density.
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To estimate the parameters of a Weibull distribution, we can use the trans-
formation from Exercise 4.6 and then use a linear fit to find the slope and
intercept of the transformed data.

Write a function that takes a sample from a Weibull distribution and esti-
mates its parameters.

Now write a function that takes the parameters of a Weibull distribution of
wind speed and computes average wind power density (you might have to
do some research for this part).

9.7 Goodness of fit

Having fit a linear model to the data, we might want to know how good it
is. Well, that depends on what it’s for. One way to evaluate a model is its
predictive power.

In the context of prediction, the quantity we are trying to guess is called
a dependent variable and the quantity we are using to make the guess is
called an explanatory or independent variable.

To measure the predictive power of a model, we can compute the coefficient
of determination, more commonly known as “R-squared”:

R2 = 1− Var(ε)
Var(Y)

To understand what R2 means, suppose (again) that you are trying to guess
someone’s weight. If you didn’t know anything about them, your best strat-
egy would be to guess ȳ; in that case the MSE of your guesses would be
Var(Y):

MSE =
1
n ∑(ȳ− yi)

2 = Var(Y)

But if I told you their height, you would guess α̂ + β̂ xi; in that case your
MSE would be Var(ε).

MSE =
1
n ∑(α̂ + β̂xi − yi)

2 = Var(ε)

So the term Var(ε)/Var(Y) is the ratio of mean squared error with and with-
out the explanatory variable, which is the fraction of variability left unex-
plained by the model. The complement, R2, is the fraction of variability
explained by the model.
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If a model yields R2 = 0.64, you could say that the model explains 64% of
the variability, or it might be more precise to say that it reduces the MSE of
your predictions by 64%.

In the context of a linear least squares model, it turns out that there is a
simple relationship between the coefficient of determination and Pearson’s
correlation coefficient, ρ:

R2 = ρ2

See http://wikipedia.org/wiki/Howzzat!

Exercise 9.8 The Wechsler Adult Intelligence Scale (WAIS) is meant to be a
measure of intelligence; scores are calibrated so that the mean and standard
deviation in the general population are 100 and 15.

Suppose that you wanted to predict someone’s WAIS score based on their
SAT scores. According to one study, there is a Pearson correlation of 0.72
between total SAT scores and WAIS scores.

If you applied your predictor to a large sample, what would you expect to
be the mean squared error (MSE) of your predictions?

Hint: What is the MSE if you always guess 100?

Exercise 9.9 Write a function named Residuals that takes X, Y, α̂ and β̂ and
returns a list of εi.

Write a function named CoefDetermination that takes the εi and Y and re-
turns R2. To test your functions, confirm that R2 = ρ2. You can download a
solution from http://thinkstats.com/correlation.py.

Exercise 9.10 Using the height and weight data from the BRFSS (one more
time), compute α̂, β̂ and R2. If you were trying to guess someone’s weight,
how much would it help to know their height? You can download a solution
from http://thinkstats.com/brfss_corr.py.

9.8 Correlation and Causation

The web comic xkcd demonstrates the difficulty of inferring causation:

In general, a relationship between two variables does not tell you whether
one causes the other, or the other way around, or both, or whether they
might both be caused by something else altogether.
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Figure 9.6: From xkcd.com by Randall Munroe.

This rule can be summarized with the phrase “Correlation does not im-
ply causation,” which is so pithy it has its own Wikipedia page: http:

//wikipedia.org/wiki/Correlation_does_not_imply_causation.

So what can you do to provide evidence of causation?

1. Use time. If A comes before B, then A can cause B but not the other
way around (at least according to our common understanding of cau-
sation). The order of events can help us infer the direction of causa-
tion, but it does not preclude the possibility that something else causes
both A and B.

2. Use randomness. If you divide a large population into two groups at
random and compute the means of almost any variable, you expect
the difference to be small. This is a consequence of the Central Limit
Theorem (so it is subject to the same requirements).

If the groups are nearly identical in all variable but one, you can elim-
inate spurious relationships.

This works even if you don’t know what the relevant variables are, but
it works even better if you do, because you can check that the groups
are identical.

These ideas are the motivation for the randomized controlled trial, in
which subjects are assigned randomly to two (or more) groups: a treatment
group that receives some kind of intervention, like a new medicine, and
a control group that receives no intervention, or another treatment whose
effects are known.

A randomized controlled trial is the most reliable way to demonstrate
a causal relationship, and the foundation of science-based medicine (see
http://wikipedia.org/wiki/Randomized_controlled_trial).
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Unfortunately, controlled trials are only possible in the laboratory sciences,
medicine, and a few other disciplines. In the social sciences, controlled ex-
periments are rare, usually because they are impossible or unethical.

One alternative is to look for a natural experiment, where different “treat-
ments” are applied to groups that are otherwise similar. One danger of
natural experiments is that the groups might differ in ways that are not ap-
parent. You can read more about this topic at http://wikipedia.org/wiki/
Natural_experiment.

In some cases it is possible to infer causal relationships using regression
analysis. A linear least squares fit is a simple form of regression that ex-
plains a dependent variable using one explanatory variable. There are sim-
ilar techniques that work with arbitrary numbers of independent variables.

I won’t cover those techniques here, but there are also simple ways to con-
trol for spurious relationships. For example, in the NSFG, we saw that first
babies tend to be lighter than others (see Section 3.6). But birth weight is
also correlated with the mother’s age, and mothers of first babies tend to be
younger than mothers of other babies.

So it may be that first babies are lighter because their mothers are younger.
To control for the effect of age, we could divide the mothers into age groups
and compare birth weights for first babies and others in each age group.

If the difference between first babies and others is the same in each age
group as it was in the pooled data, we conclude that the difference is not
related to age. If there is no difference, we conclude that the effect is entirely
due to age. Or, if the difference is smaller, we can quantify how much of the
effect is due to age.

Exercise 9.11 The NSFG data includes a variable named agepreg that
records the age of the mother at the time of birth. Make a scatterplot of
mother’s age and baby’s weight for each live birth. Can you see a relation-
ship?

Compute a linear least-squares fit for these variables. What are the units
of the estimated parameters α̂ and β̂? How would you summarize these
results in a sentence or two?

Compute the average age for mothers of first babies and the average age
of other mothers. Based on the difference in ages between the groups, how
much difference do you expect in the mean birth weights? What fraction of
the actual difference in birth weights is explained by the difference in ages?
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You can download a solution to this problem from http://thinkstats.

com/agemodel.py. If you are curious about multivariate regression, you can
run http://thinkstats.com/age_lm.py which shows how to use the R sta-
tistical computing package from Python. But that’s a whole other book.

9.9 Glossary
correlation: a description of the dependence between variables.

normalize: To transform a set of values so that their mean is 0 and their
variance is 1.

standard score: A value that has been normalized.

covariance: a measure of the tendency of two variables to vary together.

rank: The index where an element appears in a sorted list.

least squares fit: A model of a dataset that minimizes the sum of squares of
the residuals.

residual: A measure of the deviation of an actual value from a model.

dependent variable: A variable we are trying to predict or explain.

independent variable: A variable we are using to predict a dependent vari-
able, also called an explanatory variable.

coefficient of determination: A measure of the goodness of fit of a linear
model.

randomized controlled trial: An experimental design in which subject are
divided into groups at random, and different groups are given differ-
ent treatments.

treatment: An change or intervention applied to one group in a controlled
trial.

control group: A group in a controlled trial that receives no treatment, or a
treatment whose effect is known.

natural experiment: An experimental design that takes advantage of a nat-
ural division of subjects into groups in ways that are at least approxi-
mately random.
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